Supporting Information

In-situ growth of polyimide nanoarrays onto conductive carbon supports for high-rate charge storage and long-lived metal-free cathodes

Qing Zhang,[‡] ^{a,c} Yi He,^{‡a} Guanyu Lin,^{‡a} Xiaolan Ma,^b Zongying Xiao,^a Dean Shi^c and Yingkui Yang*^{a,b}

^a Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China. E-mail: <u>ykyang@mail.scuec.edu.cn</u>

^b Hubei Engineering Technology Research Centre of Energy Polymer Materials, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.

^c Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430074, China.

‡ The authors contributed equally to this work.

Fig. S1. TGA curves of pure PI, PI@GS, and PI@NT composites.

Fig. S2. (a) TEM of bare GO and (b, c) SEM images of pure PI.

Fig. S3. SEM (a-c) and TEM (d-f) images of PI@GS composites.

Fig. S4. FT-IR spectrum of acid-treated CNTs.

Fig. S5. (a) FT-IR spectra and (b) XRD patterns of GO and graphene, (c) typical XPS survey spectrum and (d) EDS of PI@GS-2.

Fig. S6. The capacity contribution of GS and CNTs for LIBs.

Fig. S7. Cycling performances of coin-type Li/LiTFSI/PI, Li/LiTFSI/PI@GS, and Li/LiTFSI/PI@NT cells at 10C over 500 cycles.

Fig. S8. CV curves of (a) pure PI, (b) PI@GS-2, and (c) PI@NT cathodes at sweep rates of 0.1 to 1.0 mV s⁻¹.

Fig. S9. Na-ion storage performance of Na/NaPF₆/PI@GS-2 cells: (a) charge/discharge curves and (b) rate performance measured in the rate range of 0.1C to 20 C, (c) charge/discharge curves at different cycles and (d) cycling stability measured at 1C for 500 cycles.

Materials	Theoretical capacity (mAh g ⁻¹)	Practical (Initial) capacity (mAh g ⁻¹), rate	Ratecapacity (mAh g ⁻¹), rate	Capacity (mAh g ⁻¹), cycle numbers, rate	Ref.						
							343	160	74	147	1
							(4e)	38.3 mA g ⁻¹	3.83 A g ⁻¹	200	
			191.5 mA g ⁻¹								
	443	175	101	101	2						
	(4e)	0.1C	2C	150							
				0.5C							
$\{ f_{i} \in \mathcal{F}_{i} ^{l} \rightarrow f_{i} $	367	127.3	108	121	3						
	(4e)	20 mA g ⁻¹	500 mA g ⁻¹	60							
				50 mA g ⁻¹							
tf Honorovy	245	125	86	77.6	4						
	(4e)	25 mA g ⁻¹	250 mA g ⁻¹	100							
				250 mA g ⁻¹							
t } 884jti,	322	80	95	130	5						
	(5e)	50 mA g ⁻¹	200 mA g ⁻¹	50							
				50 mA g ⁻¹							
t}8-84,	276	130	98	110	5						
	(4e)	50 mA g ⁻¹	200 mA g ⁻¹	50							
				50 mA g ⁻¹							
t }88 f-1	257	85	0	75	5						
	(4e)	50 mA g ⁻¹	200 mA g ⁻¹	50							
				50 mA g ⁻¹							
	225	156	102	132	6						
	(2e)	0.1C	20C	1000							
				0.5C							
	367	165	125	112 (88%)	This						
	(4e)	0.1C	20C	5000	work						
Graphene				5C							

Table S1. The comparison of reported carbonyl polymers for LIB cathodes.

References

- 1. H. Wu, Q. Meng, Q. Yang, M. Zhang, K. Lu and Z. Wei, *Adv. Mater.*, 2015, **27**, 6504-6510.
- 2. Y. Meng, H. Wu, Y. Zhang and Z. Wei, J. Mater. Chem. A, 2014, 2, 10842-10846.
- C. Chen, X. Zhao, H.-B. Li, F. Gan, J. Zhang, J. Dong and Q. Zhang, *Electrochim. Acta*, 2017, 229, 387-395.
- 4. G. Hernández, M. Salsamendi, S. M. Morozova, E. I. Lozinskaya, S. Devaraj, Y. S. Vygodskii, A. S. Shaplov and D. Mecerreyes, *J. Polym. Sci. Part A: Polym. Chem.*, 2018, **56**, 714-723.
- P. Sharma, D. Damien, K. Nagarajan, M. M. Shaijumon and M. Hariharan, J. Phys. Chem. Lett., 2013, 4, 3192-3197.
- Y. Zhang, Y. Huang, G. Yang, F. Bu, K. Li, I. Shakir and Y. Xu, ACS Appl. Mater. Interfaces, 2017, 9, 15549-15556.