Supporting Information

Pore control of Al-based MIL-53 isomorphs for the preferential capture of ethane in an ethane/ethylene mixture

Kyung Ho Cho^{a,b}, Ji Woong Yoon^a, Jeong Hyeon Lee^c, Jin Chul Kim^c, Kiwoong Kim^a, U-Hwang Lee^a, Minkee Choi^b*, Sang Kyu Kwak^c* and Jong-San Chang^{a,d}*

^aResearch Group for Nanocatalysts and Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong, Daejeon 34114, Republic of Korea; E-mail: jschang@krict.re.kr

^bDepartment of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; E-mail: mkchoi@kaist.ac.kr

^cDepartment of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea; E-mail: skkwak@unist.ac.kr

^dDepartment of Chemistry, Sungkyunkwan University, Suwon 440-476, Republic of Korea

1. Characterization of materials

Powder X-ray diffraction (PXRD) patterns were recorded on a Rigaku D/MAX-2200/PC diffractometer using graphite-monochromated CuK α radiation ($\lambda = 1.5418$ Å). The XRD data were collected over the 20 range from 3° to 40° with a step size of 0.02° and scan time of 4 s for each point at ambient temperature. High-temperature XRD data were measured on a Rigaku Ultima IVO equipped with a high-temperature cell under 30 cm³ min⁻¹ He flow. Scanning electron microscopy (SEM) images were obtained using a Tescan Mira 3 LMU FEG at 10 kV acceleration voltage, after coating the samples with Pt for 2 min in a Quorum Q 150T ES. Thermogravimetric analysis (TG) was carried out using a Scinco TGA i-1000 under 30 cm³ min⁻¹ N₂ flow with the ramping rate of 5 K min⁻¹. The C, H, N, and Al elemental compositions of the samples were determined by combining a Thermo Scientific FLASH 2000 series (EA analysis) and Thermo Scientific iCAP 6500 duo inductively coupled plasma-atomic emission spectrometer (ICP-AES).

2. Fitting of model equation of single component isotherms

The single-component C_2H_6 adsorption isotherms of all MIL-53 isomorphs and C_2H_4 adsorption isotherms of MIL-53-NDCA were fitted using the dual-site Langmuir-Freundlich (DSLF) model to obtain the best fitting results. The dual-site Langmuir-Freundlich (DSLF) equation is expressed by Eq. (S1):

$$q_{i} = q_{m1,i} \frac{K_{l,i} P^{nA}}{1 + K_{l,i} P^{nA}} + q_{m2,i} \frac{K_{2,i} P^{nB}}{1 + K_{2,i} P^{nB}}, \text{ where } K_{n,i} = K_{n,i}^{0} exp\left(-\frac{\Delta H_{n}}{RT}\right)$$
(S1)

where q_i is the uptake at equilibrium (mol kg⁻¹), R is the universal gas constant (J mol⁻¹ K⁻¹), P is the equilibrium pressure (bar); $q_{m1,i}$ and $q_{m2,i}$ are the saturation capacities of sites 1 and 2 (mol kg⁻¹) of component i; $K^0_{1,i \text{ and }} K^0_{2,i}$ are the affinity coefficients of site 1 and 2 of component i (bar⁻¹); ΔH_n is energy parameter of site 1 and site 2 (kJ mol⁻¹); and n_A and n_B are equal to $1/n_1$ and $1/n_2$, respectively, where n_1 and n_2 are the respective deviations from the ideal homogeneous surface. The single-component C_2H_4 adsorption isotherms of MIL-53-BDC and MIL-BPDC were fitted using the Langmuir-Freundlich (LF) model Eq. (S2):

$$q_{i} = q_{m1,i} \frac{K_{I,i} P^{n_{A}}}{1 + K_{I,i} P^{n_{A}}}, \text{ where } K_{n,i} = K_{n,i}^{0} exp\left(-\frac{\Delta H_{n}}{RT}\right)$$
(S2)

3. Isotsteric heats of adsorption

The isosteric heat of adsorption was calculated from the isotherms collected at three different temperatures (273, 283 and 293 K) by Eq. (S3):

$$Q_{\rm st} = R \left(\frac{\partial \ln P}{\partial \left(\frac{1}{T} \right)} \right)_q \tag{S3}$$

where Q_{st} is the isosteric heat of adsorption (kJ mol⁻¹), *R* is the universal gas constant (J mol⁻¹ K⁻¹), *P* and *T* represent pressure (bar) and temperature (K), respectively, and *q* is the adsorption amount per weight of the adsorbent (mol kg⁻¹).

4. Prediction of IAST selectivity

The ideal adsorbed solution theory (IAST) was developed by Myers and Prausnitz to predict the adsorption equilibria in multi-component gas mixture adsorption.^{1,2} The adsorption parameters calculated using the DSLF or LF equation were used for the calculation of the IAST selectivity, as expressed in Eq. (S4):

$$S = \frac{X_1}{X_2} \times \frac{Y_2}{Y_1}$$
(S4)

where X_1 and X_2 are the mole fractions of the adsorbed C_2H_6 and C_2H_4 , respectively, while Y_1 and Y_2 are the partial pressures of the C_2H_6 and C_2H_4 in a gas mixture.

5. Productivity of C₂H₄

Because the total gas flow rate changes during the breakthrough experiment due to the dynamic adsorption/desorption of C_2H_6 and C_2H_4 , the time-dependent gas flow rate was separately recorded using a mass flow meter (see the breakthrough setup in Fig. S8). Then, it was multiplied with the time-dependent C/C₀ profiles (Fig. 5) to calculate the absolute amount of flowed C_2H_6 and C_2H_4 (Fig. S10). The C_2H_4 productivity was defined by the breakthrough amount of ethylene (defined as a volume of gas at STP) over an adsorbent bed packed with 1 kg of MOF. The breakthrough amount was calculated by the integration of the breakthrough curves during a period from t_1 to t_2 during which the C_2H_4 purity is kept higher than a threshold value of 99.95%. The productivity of C_2H_4 is expressed by Eq. (S5)

$$Productivity of C_2H_4\left(\frac{L}{kg}\right) = \frac{t_1^{t_2}}{Weight \ of \ adsorbent}$$
(S5)

, where F_{C2H4} is the outlet flow rate of C₂H₄.

Figure S1. Scanning electron microscopy (SEM) images of MIL-53 isomorphs.

Figure S2. Single-component C_2H_6 and C_2H_4 adsorption isotherms of MIL-53-BDC at five different temperatures (273–303 K).

Figure S3. Single-component C_2H_6 and C_2H_4 adsorption isotherms of MIL-53-NDCA at five different temperatures (273–303 K).

Figure S4. Single-component C_2H_6 and C_2H_4 adsorption isotherms of MIL-53-BPDC at five different temperatures (273–303 K).

Figure S5. (a) The fitting results of the C_2H_6 isotherms of MIL-53-BDC with the dual-site Langmuir-Freundlich (DSLF) model. (b) The fitting results of the C_2H_4 isotherms of MIL-53-BDC with the Langmuir-Freundlich (LF) model.

Figure S6. (a) The fitting results of the C_2H_6 isotherms and (b) the C_2H_4 isotherms of MIL-53-NDCA with the dual-site Langmuir-Freundlich (DSLF) model.

Figure S7. (a) The fitting results of the C_2H_6 isotherms of MIL-53-BPDC with the dual-site Langmuir-Freundlich (DSLF) model. (b) The fitting results of the C_2H_4 isotherms of MIL-53-BPDC with the Langmuir-Freundlich (LF) model.

Figure S8. Schematic representation of the breakthrough setup.

Figure S9. C_2H_4 and C_2H_6 desorption profiles of (a) MIL-53-BDC, (b) MIL-53-NDCA, and (c) MIL-53-BPDC at 298 K under a He flow (30 cm³ min⁻¹).

Figure S10. Outlet flow rate (the gas volume is based on STP) of C_2H_6 and C_2H_4 in the breakthrough experiments with (a) MIL-53-BDC, (b) MIL-53-NDCA, and (c) MIL-53-BPDC. The integrated area (yellow) represents the produced volume of high-purity C_2H_4 (>99.95%).

Figure S11. Atom types of potential energy parameters consisting of (a) MIL-53-BDC, (b) MIL-53-NDCA, and (c) MIL-53-BPDC. Front (*top*) and top (*bottom*) views of GCMC simulation models of (d) MIL-53-BDC, (e) MIL-53-NDCA, and (f) MIL-53-BPDC. Carbon, oxygen, and aluminum atoms are colored in grey, red, and pink, respectively.

Figure S12. Adsorption isotherms of C_2H_6 and C_2H_4 on (a) MIL-53-BDC, (b) MIL-53-NDCA, and (c) MIL-53-BPDC at 303 K. The experimental (closed symbol) and simulation (open symbol) adsorption isotherms are compared. Density fields of adsorbed C_2H_6 (red dots) and C_2H_4 (blue dots) on (d) MIL-53-BDC, (e) MIL-53-NDCA, and (f) MIL-53-BPDC at 303 K and 1 bar. For (d), (e), and (f), carbon, oxygen, and aluminum atoms are colored in grey, red, and pink, respectively.

Figure S13. Optimized configurations and binding energies of (a) C_2H_6 and (b) C_2H_4 at Site I in MIL-53-BDC and (c) C_2H_6 and (d) C_2H_4 at Site I in MIL-53-BPDC. Carbon, hydrogen, oxygen, and aluminum atoms are colored in grey, white, red, and pink, respectively.

Figure S14. Optimized configurations and binding energies of (a) C_2H_6 and (b) C_2H_4 at Site II in MIL-53-BDC and (c) C_2H_6 and (d) C_2H_4 at Site II in MIL-53-BPDC. Carbon, hydrogen, oxygen, and aluminum atoms are colored in grey, white, red, and pink, respectively.

Figure S15. Thermogravimetric analysis of MIL-53 isomorphs under N_2 (temperature ramp: 5 K min⁻¹).

Figure S16. High-temperature PXRD patterns of MIL-53-BDC measured under 30 cm³ min⁻¹ He flow.

Figure S17. High-temperature PXRD patterns of MIL-53-NDCA measured under 30 cm³ min⁻¹ He flow.

Figure S18. High-temperature PXRD patterns of MIL-53-BPDC measured under 30 cm³ min⁻¹ He flow.

Figure S19. PXRD patterns of (a) MIL-53-BDC, (b) MIL-53-NDCA and (c) MIL-53-BPDC after exposure to 80% relative humidity at 298 K.

Figure S20. N_2 adsorption isotherms of (a) MIL-53-BDC, (b) MIL-53-NDCA, and (C) MIL-53-BPDC after exposure to 80% relative humidity at 298 K.

Theoretical Experimentally determined $V_{\rm micro}{}^{\rm b}$ $S_{\rm BET}{}^{\rm a}$ composition (wt%) composition (wt%) Samples Structural formula $(cm^3 g^{-1})$ $(m^2 g^{-1})$ Al С Η Al С Η Ν MIL-53-12.97 46.2 2.4 43.34 2.61 0.36 Al(OH)(BDC)_{0.92} 630 0.222 13.3 BDC MIL-53-10.45 55.83 2.71 10.8 54.78 0.21 0.584 2.79 Al(OH)(NDCA)_{0.952} 1590 NDCA MIL-53-9.49 59.16 3.17 10.5 57.71 3.16 0.08 Al(OH)(BPDC)_{0.88} 1780 0.614 BPDC

 Table S1. Theoretical/experimentally determined chemical compositions (using EA and ICP) and pore structural properties of the MIL-53 isomorphs.

^aSpecific surface area (S_{BET}) was calculated using the Brunauer–Emmett–Teller (BET) equation. ^bThe micropore volume (V_{micro}) was calculated using the *t*-plot method.

Samples	Adsorbate	$q_{\rm m} ({ m mol}~{ m kg}^{-1})$		$K_{n,i}^{0}$ (bar ⁻¹)		$-\Delta H$ (kJ mol ⁻¹)		n	
		$q_{ m m1}$	$q_{ m m2}$	$K_{1,i}^{\ 0}$	$K_{2, i}^{0}$	$(-\Delta H_l)$	(-∆H ₂)	<i>n</i> _A	n _B
MIL-53-	C_2H_6	3.11	3.75	1.47×10 ⁻⁴	5.38×10 ⁻⁶	26.08	24.03	1	1
BDC	C_2H_4	4.10	-	4.09×10 ⁻⁵	-	26.84	-	1	-
MIL-53-	C_2H_6	3.91	2.56	1.60×10-11	3.91×10-2	63.16	9.91	1.87	1.02
NDCA	C_2H_4	4.71	1.82	9.57×10 ⁻⁸	3.91×10 ⁻²	39.3	9.29	1.68	0.92
MIL-53-	C_2H_6	6.73	16.4	9.13×10 ⁻⁷	3.44×10 ⁻⁴	30.42	14.63	1	1
BPDC	C_2H_4	21.54	-	3.07×10 ⁻⁵	-	20.18	-	1	-

Table S2. Fitting results of the C_2H_6 and C_2H_4 adsorption isotherms of the MIL-53 isomorphs using the DSLF and LF models, respectively.

Adsorbent	T (K)	$q_{ m C2H6} \ ({ m mmol}\ { m g}^{-1})$	$q_{\rm C2H4}$ (mmol g ⁻¹)	Selectivity ^a	-Q _{st} , _{C2H6} (kJ mol ⁻¹)	-Q _{st,C2H4} (kJ mol ⁻¹)	Productivity of C_2H_4 (99.95%) ^d	Ref.
ZIF-7	298	1.83	1.80	1.5	-	-	2	3
ZIF-8	293	2.52	1.51	1.7	-	-	0.4	4
ZIF-4	298	2.3	2.2	2.15	-	-	6.6	5
IRMOF-8	298	4.5	3.1	1.78	52.5	49.5	-	6
MAF-49	316	1.7	1.7	2.7	56.7	45.5	5.3	7
MIL-142A	298	3.8	2.9	1.5	25.1	23.8	6.7	8
BasoliteA100	303	2.5	1.6	1.65	29.0	27.0	-	9
MIL-53-FA	308	3.7	3.35	1.9	29.0	27.0	-	10
Fe ₂ O ₂ (DOBDC)	298	3.3	2.6	4.4	66.8	37.0	19.3	11
PCN-245	298	3.27	2.39	1.9 ^b	23.0	20.5	5.8	12
PCN-250	298	5.21	4.22	1.9	23.6	21.1	10	13
MUF-15	293	4.69	4.15	1.95	37.5	33.0	14.0	14
Cu(Qc) ₂	298	1.9	0.8	3.7	29.0	25.4	4.34	15
UTSA-35a	296	2.43	2.16	1.4	29.0	28.9	-	16
UiO-66-ADC	298	1.6	1.7	1.8	36.0	36.0	-	17
UiO-66-2CF ₃	318	0.6	0.5	2.5	28.0	5.0	-	18
NiBDC(TED) _{0.5}	293	5.00	3.4	1.6	21.5	18.5	-	19
NiTMBDC(TED)0.5	298	5.45	5.02	1.99°	39	32	-	20
ZJU-120a	296	4.91	3.93	2.74	27.6	26.5	8.39	21
CPM-733	298	7.12	6.37	1.75	23.3	22.5	19.71	22
MIL-53-BDC	298	2.93	2.78	1.70	27.2	22.3	5.3	This work
MIL-53-NDCA	298	4.24	3.12	1.53	24.2	17.0	11.2	This work
MIL-53-BPDC	298	2.97	2.07	1.47	22.1	22.1	3.5	This work

Table S3. Comparison of various adsorbents in terms of C_2H_6 and C_2H_4 adsorption capacity, C_2H_6/C_2H_4 selectivity, isosteric heat of adsorption, and C_2H_4 productivity over 99.95% purity at 1 bar.

^a Selectivity calculated by IAST for an equimolar mixture of C₂H₆/C₂H₄ at 1 bar

 $^{\rm b}$ For C_2H_6/C_2H_4 (1/9 v/v)

° For C_2H_6/C_2H_4 (1/15 v/v)

^d Calculated based on the breakthrough experiments using a C_2H_6/C_2H_4 (50/50 v/v) mixture gas

Table S4. Potential energy parameters of Lennard-Jones 12-6 potential, $E(R) = D_0 \left(\left(\frac{R_0}{R} \right)^{12} - 2 \left(\frac{R_0}{R} \right)^6 \right)$, adopted

Atom type	$R_{0}(A)$	D ₀ (kcal/mol)	Ref.
Al	0	0	23
0_1	3.3898	0.1848	24
O_2	3.1429	0.1093	25
C_1	4.1475	0.1004	26
C_2	4.3552	0.0417	26
C_3	4.3215	0.0397	27
C_4	4.1531	0.0596	26
C_CH ₃	4.2092	0.1947	28
C_CH ₂	4.125	0.1689	26

from TraPPE-UA. Atom types are corresponding to Fig. S11a-c.

References

- 1. A. L. Myers and J. M. Prausnitz, *AlChE J.*, 1965, **11**, 121.
- 2. S. J. Caldwell, B. Al-Duri, N. Sun, C.-g. Sun, C. E. Snape, K. Li and J. Wood, *Energy Fuels*, 2015, 29, 3796.
- 3. C. Gücüyener, J. van den Bergh, J. Gascon and F. Kapteijn, J. Am. Chem. Soc., 2010, 132, 17704.
- 4. U. Bohme, B. Barth, C. Paula, A. Kuhnt, W. Schwieger, A. Mundstock, J. Caro and M. Hartmann, Langmuir, 2013, 29, 8592.
- 5. M. Hartmann, U. Bohme, M. Hovestadt and C. Paula, *Langmuir*, 2015, **31**, 12382.
- 6. J. Pires, M. L. Pinto and V. K. Saini, ACS Appl. Mater. Interfaces, 2014, 6, 12093.
- 7. P. Q. Liao, W. X. Zhang, J. P. Zhang and X. M. Chen, Nat. Commun., 2015, 6, 8697.
- 8. Y. Chen, H. Wu, D. Lv, R. Shi, Y. Chen, Q. Xia and Z. Li, Ind. Eng. Chem. Res., 2018, 57, 4063.
- 9. R. P. P. L. Ribeiro, B. C. R. Camacho, A. Lyubchyk, I. A. A. C. Esteves, F. J. A. L. Cruz and J. P. B. Mota, *Micropor. Mesopor. Mater.*, 2016, 230, 154.
- 10. J. Peng, Y. Sun, Y. Wu, Z. Lv and Z. Li, Ind. Eng. Chem. Res., 2019, 58, 8290.
- 11. L. Li, R. B. Lin, R. Krishna, H. Li, S. Xiang, H. Wu, J. Li, W. Zhou and B. Chen, Science, 2018, 362, 443.
- 12. D. Lv, R. Shi, Y. Chen, Y. Wu, H. Wu, H. Xi, Q. Xia and Z. Li, ACS Appl. Mater. Interfaces, 2018, 10, 8366.
- 13. Y. Chen, Z. Qiao, H. Wu, D. Lv, R. Shi, Q. Xia, J. Zhou and Z. Li, Chem. Eng. Sci., 2018, 175, 110.
- 14. O. T. Qazvini, R. Babarao, Z. L. Shi, Y. B. Zhang and S. G. Telfer, J. Am. Chem. Soc., 2019, 141, 5014.
- R. B. Lin, H. Wu, L. Li, X. L. Tang, Z. Li, J. Gao, H. Cui, W. Zhou and B. Chen, J. Am. Chem. Soc., 2018, 140, 12940.
- 16. Y. He, Z. Zhang, S. Xiang, F. R. Fronczek, R. Krishna and B. Chen, Chem. Commun., 2012, 48, 6493.
- 17. Y. Wang, S. Yuan, Z. Hu, T. Kundu, J. Zhang, S. B. Peh, Y. Cheng, J. Dong, D. Yuan, H.-C. Zhou and D. Zhao, ACS Sustain. Chem. Eng., 2019, 7, 7118.
- 18. J. Pires, J. Fernandes, K. Dedecker, J. R. B. Gomes, G. Perez-Sanchez, F. Nouar, C. Serre and M. L. Pinto, *ACS Appl. Mater. Interfaces*, 2019, **11**, 27410.
- H. Xiang, A. Ameen, P. Gorgojo, F. R. Siperstein, S. M. Holmes and X. Fan, *Micropor. Mesopor. Mater.*, 2020, 292, 109724
- X. Wang, Z. Niu, A. M. Al-Enizi, A. Nafady, Y. Wu, B. Aguila, G. Verma, L. Wojtas, Y.-S. Chen, Z. Li and S. Ma, *J. Mater. Chem. A*, 2019, 7, 13585.
- 21. J. Pei, J.-X. Wang, K. Shao, Y. Yang, Y. Cui, H. Wu, W. Zhou, B. Li and G. Qian, *J. Mater. Chem. A*, 2020, **8**, 3613.
- 22. H. Yang, Y. Wang, R. Krishna, X. Jia, Y. Wang, A. N. Hong, C. Dang, H. E. Castillo, X. Bu and P. Feng, *J. Am. Chem. Soc.*, 2020, **142**, 2222.
- 23. N. A. Ramsahye, G. Maurin, S. Bourrelly, P. L. Llewellyn, T. Loiseau, C. Serre and G. Férey, *Chem. Commun.*, 2007, DOI: 10.1039/B702986A, 3261.
- 24. B. Chen, J. J. Potoff and J. I. Siepmann, J. Phys. Chem. B, 2001, 105, 3093.
- 25. J. M. Stubbs, J. J. Potoff and J. I. Siepmann, J. Phys. Chem. B, 2004, 108, 17596.
- 26. C. D. Wick, M. G. Martin and J. I. Siepmann, J. Phys. Chem. B, 2000, 104, 8008.
- 27. G. Kamath, F. Cao and J. J. Potoff, J. Phys. Chem. B, 2004, 108, 14130.
- 28. M. G. Martin and J. I. Siepmann, J. Phys. Chem. B, 1998, 102, 2569.