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Figure S1. High magnification TEM image of spherical KxMnO2 precursors.

Figure S2. High and low magnification SEM images of GNS@MnO with different 

Calcination temperature: (a,b) GNS@MnOx-400, (c,d) GNS@MnO-800.



Figure S3. Rate performance of pure MnO electrode.

Figure S4. The first three CV curves of MnO at a scan rate of 0.1 mV s-1.



Figure S5. Scheme for voltage response with time during a single constant current 

pulse: (a) Discharge. (b) Charge.

Figure S6.GITT characterization: GITT potential profiles of (a) discharge and (b) 

charge for GNS@MnO-600 anode. (c) Variation of cell potential during single charge 

and discharge titration plotted againstτ1/2 for GNS@MnO-600 anode. GITT potential 

profiles of (d) discharge and (e) charge for MnO anode. (f) Variation of cell potential 

during single charge and discharge titration plotted against τ1/2 for pure MnO anode.

GITT is an effective strategy to estimate the apparent Li+ ion diffusion coefficient at 

different quasi-equilibrium potentials. During the test, a relatively small titration 

current density (i.e., 0.1 A g-1) is applied for a relatively short period (i.e., τ = 20 min 



= 1200 s) to induce a potential shift (ΔEτ), followed by much longer relaxation period 

(i.e., 4τ = 80 min = 4800 s) to reach a quasi-equilibrium potential for the calculation 

of ΔEs (Figure S5). The above titration-relaxation cycle is performed continuously at 

the whole potential window (i.e., 0.01-3.0 V vs. Li/Li+) to give a completed potential 

profile (Figure S6).  

The apparent Li+ diffusion coefficient (D, cm2 s-1) is calculated based on Fick's 

second law of diffusion (equation S1):1, 2

                                           (S1)
𝐷 =
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where m(g) is mass loading, Vm (cm3 mol-1) is molar volume of the electrode, M (g 

mol-1) is molar weight of the electrode, A (cm2) is electroactive area of the electrode, 

ΔEs (V) is the change of quasi-equilibrium potential after two sequential relaxation 

period, τ (s) is charge or discharge time during each titration, dEτ/d√τ (V s-1/2) is 

potential shift rate.

The above equation S1 can be simplified as equation S2 by applying the small current 

density for a sufficiently short time in each titration.
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Figure S7.TEM images of 3DFAC

Figure S8. GCD profiles of GNS@MnO-600//3DFAC LIHC (1:1) at high current 
density.



Figure S9. CVs and GCD profiles of GNS@MnO-600//3DFAC LIHCs with different 
mass ratios: (a, b) 2:1; (c, d) 1:2.

Figure S10. Cycling stability of the as-assembled GNS@MnO-600//3DFAC devices 

with mass ratios of 2:1 and 1:2. 



Table S1. Comparison of the electrochemical performances of the as-prepared 1D 

GNS@MnO-600 anode with other MnO-C anode materials for LIBs reported 

previously. 

Materials Rate performance Ref.

MnO@NC/ graphite 0.1 A g-1 / 835 mA h g-1

5.0 A g-1 / 387 mA h g-1 3

NC/MnO/RGO 0.1 A g-1 / 925.9 mA h g-1

5.0 A g−1 / 355.5 mA h g-1 4

MnO@HCF-2 0.1 A g-1 / 586.8 mA h g-1

4.0 A g-1 / 327.8 mA h g-1 5

MnO@N-CS 0.2 A g-1 / 917mA h g-1

5.0 A g-1 / 328 mA h g-1 6

MnO/Mn3O4/N-graphene 0.5 A g-1 / 681 mA h g-1

2.0 A g-1 / 365 mA h g-1 7

MnO/N-PCNTs 0.1 A g-1 / 652 mA h g-1

1.0 A g-1 / 220 mA h g-1 8

MnO/Metal/Carbon 0.1 C / 600 mA h g-1

5.0 C / 200 mA h g-1 9

Sn-MnO@CYINs 0.2 A g-1 / 662 mA h g−1

2.0 A g-1 / 402 mA h g-1 10

RGO-MnO@NC 0.5 A g-1 / 599 mA h g-1

5.0 A g-1 / 331 mA h g-1 11

C/MnO/SiOC 0.1 A g-1 / 684 mA h g-1

2.0 A g-1 / 408 mA h g-1 12

MnO-PS 0.1 A g-1 / 960 mA h g-1

2.0 A g-1 / 300 mA h g-1 13

1D GNS@MnO-600 0.1 A g-1/ 766 mA h g-1

5.0 A g-1 / 437 mA h g-1 This work
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