Supporting Information

A Multifunctional Artificial Protective Layer Producing an Ultra-stable Lithium Metal Anode in a Commercial Carbonate Electrolyte

Song Li, Xian-Shu Wang, Qi-Dong Li, Qi Liu, Pei-Ran Shi, Jing Yu, Wei Lv, Feiyu Kang, Yan-Bing He, * Quan-Hong Yang

Figure S1. TEM of GO nanosheet

Figure S2. The mechanical properties of (a) MAP with GO and (b) MAP without GO via AFM characterization.

Figure S3. The O 1s and C 1s spectra of pristine Li.

Figure S4. Cross sectional SEM of a MAP-modified lithium anode.

Table S1.	The cycle l	ife of dif	ferent kinds	s of lithium	anode	modified	with a	SEI in a
carbonate liquid electrolyte								

Artificial SEIs	Test condition	Cycle life	Referrence	
graphite fluoride	1mA cm ⁻²	250 h	[1]	
РАА	0.5 mA cm^{-2}	700 h	[2]	
	1 mA cm^{-2}	250 h	[-]	
ZnO/PVDF-HFP	0.5 mA cm ⁻²	500 h	[3]	
Li ₃ PO ₄	0.5 mA cm ⁻²	900 h	[4]	
NiF ₂	0.5 mA cm ⁻²	1000 h	[5]	
poly((N-2,2-dimethyl-1,3-dioxolane-4- methyl)-5-norbornene-exo-2,3- dicarboximide)	1.0 mA cm ⁻² 0.5 mAh cm ⁻²	300 h	[6]	
SBR/Li ₃ Sb	1.0 mA cm ⁻²	500 h	[7]	
organic alucone/Al ₂ O ₃	1 mA cm ⁻²	900 h	[8]	
This work	1 mA cm ⁻²	>1100 h		

- [1] X. W. Shen, Y. T. Li, T. Qian, J. Liu, J. Q. Zhou, C. L. Yan and J. B. Goodenough, *Nature Commun.* 2019, 1, 900.
- [2] N. W. Li, Y. Shi, Y. X. Yin, X. X. Zeng, J. Y. Li, C. J. Li, L. J. Wan, R. Wen and Y. G. Guo, Angew. Chem. Int. Ed. 2018, 57, 1505.
- [3] Y. T. He, Y. H. Zhang, X. F. Li, Z. Lv, X. J. Wang, Z. G. Liu and X. Q. Huang, *Energy Storage Mater.* 2018, 14, 392.
- [4] L. P. Wang, Q. J. Wang, W. S. Jia, S. L. Chen, P. Gao and J. Z. Li, J. Power Sources 2017, 342, 175.
- [5] Z. Peng, N. Zhao, Z. G. Zhang, H. Wan, H. Lin, M. Liu, C. Shen, H. Y. He, X. X. Guo, J. G. Zhang and D. Y. Wang, *Nano Energy* 2017, 39, 662.
- [6] Y. Gao, Y. M. Zhao, Y. C. Li, Q. Q. Huang, T. E. Mallouk and D. H. Wang, J. Am. Chem. Soc. 2017, 139, 15288.
- [7] Y. J. Zhang, G. Y. Wang, L. Tang, J. J. Wu, B. K. Guo, M. Zhu, C. Wu, S. X. Dou and M. H. Wu, J. Mater. Chem. A 2019, 7, 25369.
- [8] Y. Zhao, M. Amirmaleki, Q. Sun, C. T. Zhao, A. Codirenzi, L. V. Goncharova, C. H. Wang, K. Adair, X. Li, X. F. Yang, F. P. Zhao, R. Y. Li, T. Filleter, M. Cai and X. L. Sun,

Matter 2019, 1, 1215.

Figure S5. Comparison of the long-term cycling stability of Li/Li symmetric batteries with a pristine Li anode and a Li anode modified with a MAP layer at 5mA/cm² and 1mAh/cm².

Figure S6. The top-view morphology of GO@PVDF-HFP layer.

Figure S7. Voltage profile of continuous Li plating/stripping cycling of symmetric cell assembled with GO@PVDF-HFP-Li anode at a current density of $1 \text{ mA} \cdot \text{cm}^{-2}$ and a capacity

of 1 mAh·cm⁻².

Figure S8. The magnified images of uncycled (a) and cycled (b) pristine Li metal, and uncycled (c) and cycled (d) MAP-Li anodes.

Figure S9. The O 1s, C 1s, and F 1s spectra of MAP layer.

Figure S10. Comparison of the rate performance of LiFePO₄/Li cells with pristine and modified Li anodes.