Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Synergistic Enhancement by MoS_x and Sulphate on Amorphous Polymetallic Oxides Nanosheets for

Oxygen Evolution Reaction

Yonghao Gan, Xiaoping Dai*, Meilin Cui, Huihui Zhao, Fei Nie, Ziteng Ren, Xueli Yin, Zhaohui Yang, Baoqiang

Wu, Yihua Cao, Xin Zhang

State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China

* CORRESPONDING AUTHOR.

Prof. X. P. Dai: daixp@cup.edu.cn

Figure S1. SEM images of (a) FCMOS, (b) CMOS, (c) FMOS and (d) FCMO

Figure S2 HRTEM images of FCMOS

Figure S3. XRD spectrums of FCMOS, FCMOS-350, FCMOS-400, FCMO, CMOS and FMOS.

Figure S4. AFM of the FCMOS

Figure S5. EDS spectrum of as-synthesized FCMOS

Figure S6. (a)The survey spectra of FCMOS and FCMO; (b) XPS spectra of O 1s of FCMOS and FCMO

	Overpotential at	current density		Ref.
catalysts	(m)	V)	Tafel (mV dec ⁻¹)	
	10 mA cm ⁻²	100 mA cm ⁻²		
FCMOS	260	320	47	This work
FCMO	290	420	93	This work
Vo-(Co,Fe) ₃ O ₄ /CC	286	-	41	1
holey NiCoS-NS	280	-	85	2
S-NiFe ₂ O ₄ /NF	420	-	118.1	3
Co,Fe-MoS ₂	260	370	117	4
FeCoMo	277	336	27.74	5
CoMoS ₃	320	-	-	6
CoFeS	290	-	52.6	7
SnCoFe-Ar	300	-	42.3	8
A-CoS _{4.6} O _{0.6} ONCs	290	-	67	9
СМО	340	-	49	10
M-Co ₃ O ₄ /NPC	302	-	84	11

Table S1. Comparison of the OER performance of various catalysts in 1.0 M KOH solution

Figure S7. Cyclic voltammograms of FCMOS and FCMO

Figure S8. Cyclic voltammograms of (a) FCMOS, (b) CMOS, (c) FMOS, (d) FCMO, and (e) MS at scan rates from 20 to 120 mV/s.

Figure S9. ECSA of FCMOS, CMOS, FMOS, FCMO and MS

Figure S10. ECSA-normalized LSV curves

Figure S11. Electrical equivalent circuit model used for fitting of EIS

Samples	R₅(Ω·cm²)	10 ² Q ₁ (S·cm ⁻² ·s ⁿ)	n1	R₁(Ω·cm²)	10 ² Q ₂ (S·cm ⁻² ·s ⁿ)	n ₂	R₂(Ω·cm²)
FCMOS	0.948	5.093	0.906	1.192	29.660	0.562	0.473
FCMO	1.094	1.420	0.872	6.825	2.808	0.628	0.802
CMOS	0.085	4.269	0.882	40.400	1.262	0.302	1.491
FMOS	0.544	0.761	0.949	29.200	0.989	0.741	26.340
MS	0.552	0.271	0.937	30.340	27.760	0.832	0.177

Table S2. Estimates of the equivalent circuit parameters for different samples

Figure S12. Comparison of survey XPS spectra between before and after OER stability testing of the FCMOS in 1 M KOH

Reference

- F. Liu, W. Jin, Y. Li, L. Zheng, Y. Hu, X. Xu, Y. Xue, C. Tang, H. Liu and J. Zhang, *Appl. Surf. Sci.*, 2020, **529**, 147125.
- 2. C. Qin, A. Fan, D. Ren, C. Luan, J. Yang, Y.-J. Liu, X. Zhang, X. Dai and M. Wang, *Electrochim. Acta*, 2019, **323**, 134756.
- 3. J. Liu, D. Zhu, T. Ling, A. Vasileff and S.-Z. Qiao, Nano Energy, 2017, 40, 264-273.
- 4. C. Si, Y. Wu, Y. Sun, Q. Liu, L. Tang, X. Zhang and J. Guo, *Electrochim. Acta*, 2019, **309**, 116-124.
- 5. P. F. Liu, S. Yang, L. R. Zheng, B. Zhang and H. G. Yang, Chem. Sci., 2017, 8, 3484-3488.
- 6. J. Guo, X. Zhang, Y. Sun, L. Tang and X. Zhang, J. Mater. Chem. A, 2017, 5, 13230-13230.
- 7. Y. Zhou, M. Luo, Z. Zhang, W. Li, X. Shen, W. Xia, M. Zhou and X. Zeng, *Appl. Surf. Sci*, 2018, **448**, 9-15.
- 8. D. Chen, M. Qiao, Y. R. Lu, L. Hao, D. Liu, C. Dong, Y. Li and S. Wang, *Angew. Chem. Int. Edit.*, 2018, **57**, 8691-8696.
- 9. P. Cai, J. Huang, J. Chen and Z. Wen, Angew. Chem. Int. Edit., 2017, 56, 4858-4861.
- 10.C. Guo, X. Sun, X. Kuang, L. Gao, M. Zhao, L. Qu, Y. Zhang, D. Wu, X. Ren and Q. Wei, *J. Mater. Chem. A*, 2019, **7**, 1005-1012.
- 11.X. Yang, J. Chen, Y. Chen, P. Feng, H. Lai, J.Li and X. Luo, *Nano-micro Lett.* 2018, **10**, 15.