Embedding CsPbBr₃ quantum dots into pillar[5]arene-based supramolecular self-assembly for efficient photocatalytic cross-coupling hydrogen evolution reaction

Kaipeng Zhong,^[a] Siyu Lu,^{*[c]} Wenting Guo,^[a] Junxia Su,^[a] Shihao Sun,^[a] Jun Hai,^[a] Fenjuan Chen,^[a] Aiqin Wang,^{*[b]} and Baodui Wang^{*[a]}

[a] State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu, Lanzhou, 730000, China.

[b] Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China

[c] Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450000, China.

1. Experimental section

1.1 Materials and physical methods

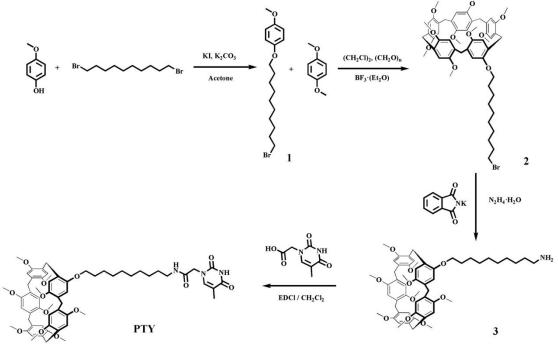
All the commercial materials and reagents were purchased from Energy Chemical or Aladdin Reagents and used directly as received. All other reagents and solvents were commercially available at analytical grade and were used without further purification. Field-emission scanning electron microscope (FE-SEM, FEI, Sirion 200), transmission electron microscope (TEM, Tecna i-G2-F30 (FEI)), X-ray powder diffraction (XRD, AXS D8-Advanced diffractometer), X-ray photoelectron spectroscopy (XPS, a PHI5702 multifunctional spectrometer), were used to characterize the morphology and composition of the material. UV-vis absorbance measurements were recorded on Shimadzu UV-1750. Photocatalysis was performed using Xenon lamp (HSXF/UV 300), equipped with 400-800 nm filter. Photoluminescence (PL) spectra were acquired on an Edinburgh Instruments FLS920 fluorescence spectrometer. For the measurement of PL lifetime, the used excitation wavelength (λ_{ex}) was 360 nm and the maximum emission wavelength (λ_{em}) was 550 nm. The average lifetime (Ave. τ) is calculated according to $\tau = \tau_1 \cdot I_1 + \tau_2 \cdot I_2 + \tau_3 \cdot I_3 (\tau_i)$ is the lifetime; I_i is the relative intensity). ^{[1, 2] 1} H-NMR spectrums were gathered on a JEOL ESC 400 M instrument. Chemical shifts are reported in ppm downfield from tetramethylsilane (TMS, δ scale with solvent resonances as internal standards). Mass spectra were performed on a Bruker Esquire 3000 plus mass spectrometer (Bruker-Franzen Analytik GmbH Bremen, Germany) equipped with ESI interface and ion trap analyzer. FT-IR spectra were performed on a Nicolet FT-170SX spectrometer. Melting points were measured on an X-4 digital melting-point apparatus (uncorrected). 1.2 Energy-transfer efficiency

Energy-transfer efficiency (Φ_{ET}) was calculated from excitation fluorescence spectra through the equation: $\Phi_{\text{ET}} = 1 - F_{\text{DA}} / F_{\text{D}}$.¹

Where F_{DA} and F_D are the fluorescence intensities of the emission of CsPbBr₃@PTY⊃EYB (donor and acceptor) and CsPbBr₃ (donor) respectively, when excited at 360 nm. The energy-transfer efficiency (Φ_{ET}) was calculated as 96.5%

in toluene, measured under the condition of [PTY] = 2×10^{-5} M, [CsPbBr₃] = 1.25×10^{-4} M, [EYB] = 5×10^{-7} M, and $\lambda_{ex} = 360$ nm.

1.3 Fluorescence lifetimes


The emission decays of CsPbBr₃, CsPbBr₃@PTY \supset EYB and EYB in toluene solvent were studied and the decay traces for the samples were well fitted with triple exponential function *Y*(*t*) based on nonlinear least-squares, using the following expression.²

 $Y(t) = B_1 \exp(-t/\tau_1) + B_2 \exp(-t/\tau_2) + B_3 \exp(-t/\tau_3)$

where B_1 , B_2 , B_3 are fractional contributions of time-resolved emission decay lifetimes τ_1 , τ_2 , τ_3 and the average lifetime τ could be concluded from the equation:

$$\langle \tau \rangle = \frac{B_1 \tau_1^2 + B_2 \tau_2^2 + B_3 \tau_3^2}{B_1 \tau_1 + B_2 \tau_2 + B_3 \tau_3}$$

2. Synthesis and characterizations of compounds.

Scheme S1. Synthesis of compound PTY.

Synthesis of compound $1.^3$ A mixture of 4-methoxyphenol (2.48 g, 20.0 mmol), K₂CO₃ (13.82 g, 100 mmol), KI (3.32 g, 20 mmol), 1,10-dibormodecane (24.01 g, 80 mmol) and acetone (400.0 mL) were added to a 500 mL round-bottom flask under

nitrogen atmosphere. The reaction mixture was stirred at 65 °C for 72 h. After the solid was filtered off, the solvent was evaporated and the residue was dissolve in CH₂Cl₂. The crude product was purified by silica gel column chromatography using petroleum ether/ethyl acetate (V/V = 50:1) as the eluent, compound 1 as white solid (6.53 g, yield 95%) was isolated. Mp: 60-62 °C. ¹H NMR (CDCl₃, 600 MHz), δ /ppm: 6.83 (s, 4H), 3.91-3.89 (t, J = 6.6 Hz, 2H), 3.76 (s, 3H), 3.41-3.39 (t, J = 6.9 Hz, 2H), 1.86-1.82 (m, 2H), 1.77-1.72 (m, 2H), 1.45-1.41 (m, 2H), 1.35-1.30 (m, 10H).

Synthesis of compound 2.⁴ 1-(10-bromodecyloxy)-4-methoxybenzene (compound 1) (1.72 g, 5 mmol) was added to a solution of 1,4-dimethoxybenzene (8.29 g, 60 mmol) and paraformaldehyde (3.00 g, 100 mmol) in 1,2-dichloroethane (250 mL), the mixture was stirred at room temperature for 40 min. Then, boron trifluoride diethyl etherate (6 mL, 47.6 mmol) was added to the solution and the mixture was stirred at 30 °C for 40 min. After the reaction was finished, the resulting oil was dissolved in CH₂Cl₂ (250 mL) and washed third with H₂O (300 mL). The organic layer was dried over anhydrous Na₂SO₄ and evaporated to afford the crude product. After purification by column chromatography using petroleum ether/ethyl acetate (V/V = 50:1) as the eluent, compound 2 as a white solid (1.67g, yield 35%) was isolated. Mp: 170-172 °C. ¹H NMR (CDCl3, 600 MHz), δ /ppm: 6.95-6.80 (m, 10H), 3.98-3.96 (t, J = 6.2 Hz, 2H), 3.80-3.70 (m, 37H), 2.93-2.61 (m, 2H), 1.83-1.71 (m, 4H), 1.34-1.31 (m, 2H), 1.25-0.68 (m, 10H). ESI-MS m/z: 2 Calcd for C₅₄H₆₇BrO₁₀, 954.3918; Found 954.3923.

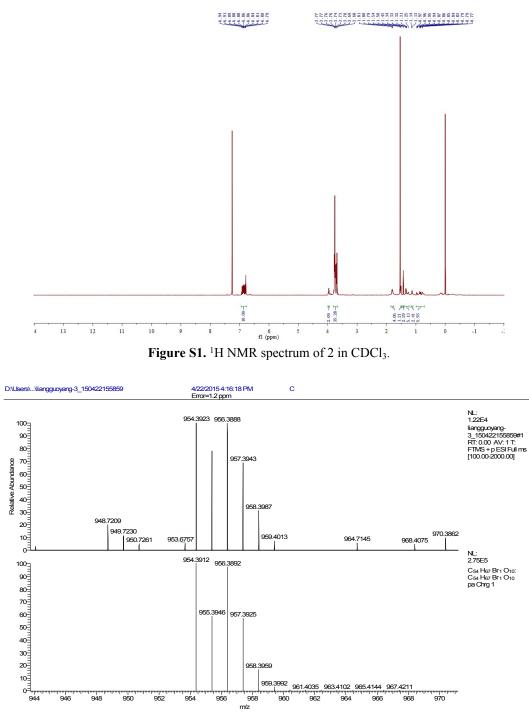
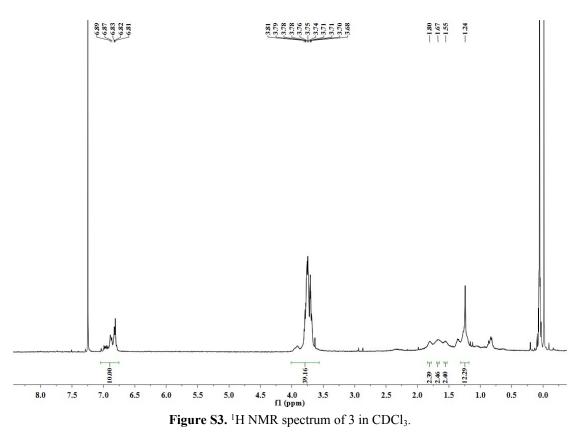



Figure S2. ESI-MS spectrum of 2.

Synthesis of compound 3. Compound 3 was synthesized by a similar route as Huang's.⁵ A mixture of bromo-functionalized pillar[5]arene (compound 2) (0.95 g, 1.0 mmol) and phthalimide potassium (0.21 g, 1.1 mmol) in 30 mL of DMF was stirred at 90 °C for 24 h under nitrogen atmosphere. After adding water (100 mL), the resulting precipitates were collected by filtration and dried to give crude product. The crude

product was dissolved in THF (30 mL), methanol (3 mL) and hydrazine hydrate (3 mL). After stirred at 50 °C for 24 h, the reaction mixture was concentrated by rotary evaporation. The resulting residue was dissolved in CH₂Cl₂ (150 mL) and washed with H₂O (2 × 200 mL). The organic layer was dried over anhydrous Na₂SO₄ and evaporated to afford the crude product, which was isolated by flash column chromatography using dichloromethane/methanol (V/V = 10 : 1). The fractions containing the product were combined and concentrated under vacuum to give compound 3 (0.70 g, yield 65%) as a white solid. Mp: 138-140 °C. ¹H NMR (CDCl₃, 400 MHz), δ 7.05 – 6.75 (m, 10H), 3.75 (m, 39H), 1.80 (s, 2H), 1.67 (s, 2H), 1.55 (s, 2H), 1.24 (s, 12H).

Synthesis of PTY: 3 (300 mg, 0.34 mmol), thymidine derivative (81 mg, 0.44 mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (84 mg, 0.44 mmol), and 4-dimethylaminopyridine (3 mg) were added into dichloromethane (50 mL). Then, the resulting solution was stirred at room temperature for 24 h. The mixture was concentrated at reduced pressure. The crude product was purified by

silica column chromatography (dichloromethane/methanol = 30:1) to give a white solid (0.25 g, yield: 70%). ¹H NMR (400 MHz) δ 7.09 (s, 1H), 6.86 – 6.74 (m, 10H), 4.30 (s, 2H), 4.21 (t, *J* = 6.0 Hz, 2H), 3.75 (d, *J* = 3.9 Hz, 10H), 3.68 (d, *J* = 12.9, 7.6 Hz, 27H), 2.81 (d, *J* = 2.6 Hz, 2H), 1.94 (d, *J* = 6.3 Hz, 3H), 1.82 – 1.63 (m, 4H), 1.56 – 1.47 (m, 3H), 1.41 (t, *J* = 6.0 Hz, 2H), 1.32 (d, *J* = 6.3 Hz, 6H), 1.22 (d, *J* = 3.7 Hz, 3H). ESI-MS m/z: [PTY + H⁺] Calcd for C₆₁H₇₆N₃O₁₃, 1058.53; Found 1058.49.

 66.53
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 6.65
 <t

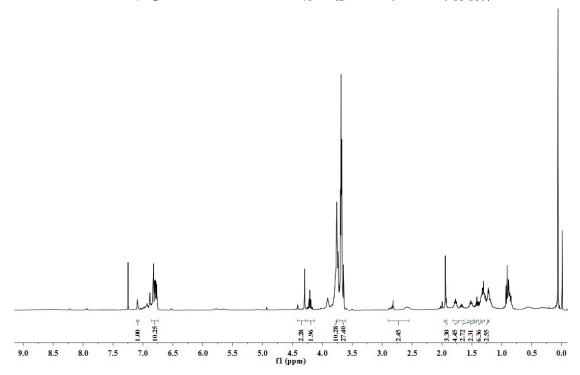
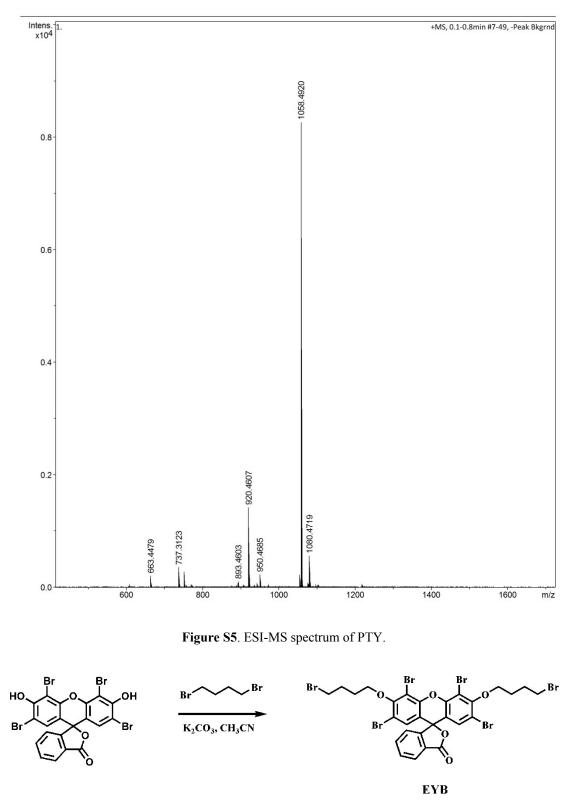



Figure S4. ¹H NMR spectrum of compound PTY in CDCl₃.

Scheme S2. Synthesis of compound EYB.

Synthesis of EYB: A mixture of eosin Y (1.30 g, 2.0 mmol), K_2CO_3 (1.38 g, 10 mmol), 1,4-dibormodecane (2.40 g, 8 mmol) and acetonitrile (80.0 mL) were added to a 250 mL round-bottom flask under nitrogen atmosphere. The reaction mixture was

stirred at 80 °C for 24 h. After the solid was filtered off, the solvent was evaporated and the residue was dissolve in CH₂Cl₂. The crude product was purified by silica gel column chromatography using petroleum ether/ethyl acetate (V / V = 20:1) as the eluent, compound EYB as shiny red solid (0.92 g, yield 50%) was isolated. ¹H NMR (400 MHz,) δ 8.32 (d, *J* = 7.7, 1.4 Hz, 1H), 7.80 (d, *J* = 19.2, 7.6, 1.4 Hz, 2H), 7.32 – 7.26 (m, 2H), 7.10 (s, 1H), 4.14 (d, *J* = 18.0, 6.1 Hz, 4H), 3.55 (t, *J* = 6.5 Hz, 2H), 3.36 (t, *J* = 6.5 Hz, 2H), 2.26 – 2.17 (m, 2H), 2.08 (d, *J* = 8.7, 5.6 Hz, 2H), 1.86 – 1.77 (m, 2H), 1.72 (d, *J* = 5.4, 3.4 Hz, 2H).

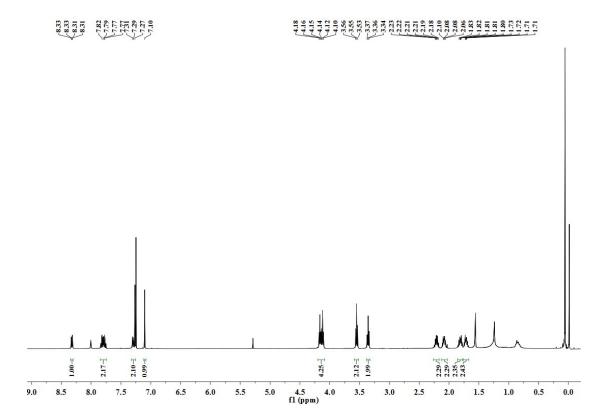
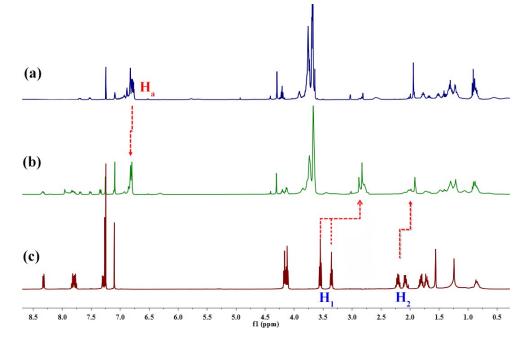
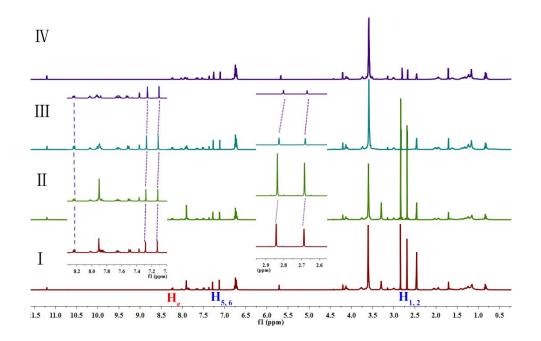
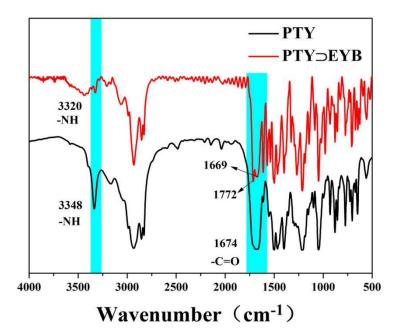
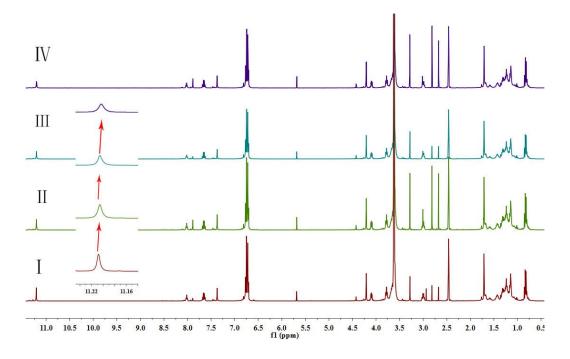




Figure S6. ¹H NMR spectrum of compound EYB in CDCl₃.


3.¹H NMR spectra of PTY, Pb²⁺ and PTY⊃EYB in different concentrations


Figure S7. Partial spectra of ¹H NMR (400 MHz, CDCl₃, 298K) of EYB upon complexation with 2.0 equiv. of PTY (5 mg/mL); (a) PTY⊃EYB; (c) EYB.

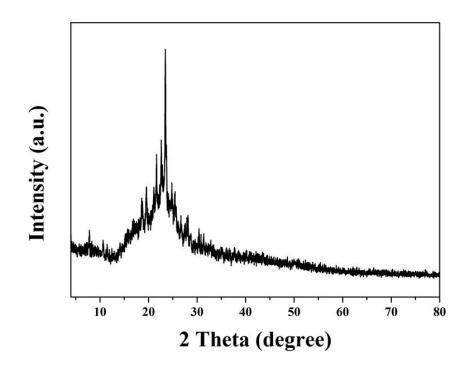

Figure S8. Partial ¹H NMR spectra (400 MHz, 298 K) of PTY \supset EYB in DMSO-*d*₆ at various concentrations: (I) 10.0, (II) 20.0, (III) 40.0, and (IV) 80.0 mg/mL.

Figure S9. IR spectra of PTY, PTY⊃EYB.

Figure S10. Partial spectra of ¹H NMR (DMSO- d_6 , 400 MHz, 298 K) titration of PTY with different equivalents of Pb²⁺: (I) 0; (II) 0.4; (III) 0.8; (IV) 1.2.

Figure S11. (a) XRD diagrams of PTY⊃EYB.

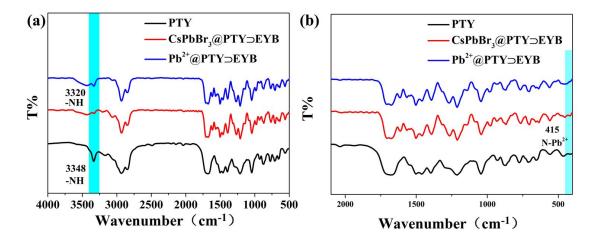


Figure S12. IR spectra of compound PTY, Pb²⁺@PTY⊃EYB and CsPbBr₃@PTY⊃EYB.

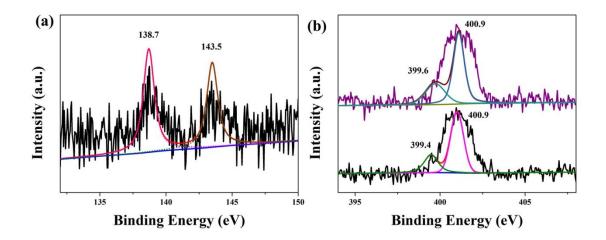
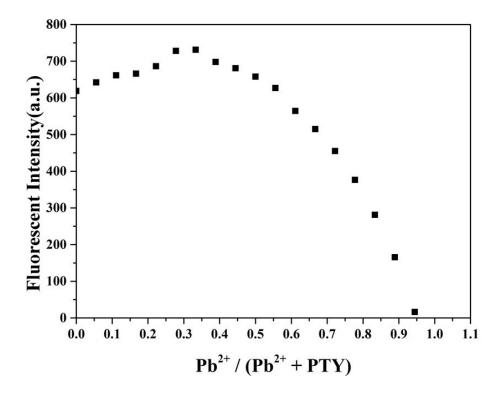
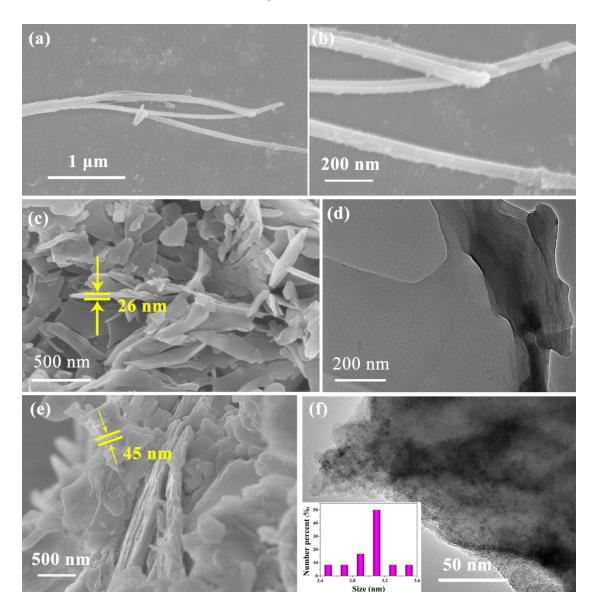




Figure S13. XPS spectra of PTY⊃EYB and Pb²⁺@PTY⊃EYB: (a) N and (b) Pb.

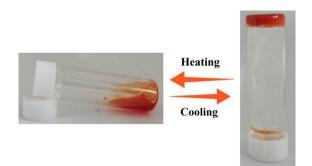
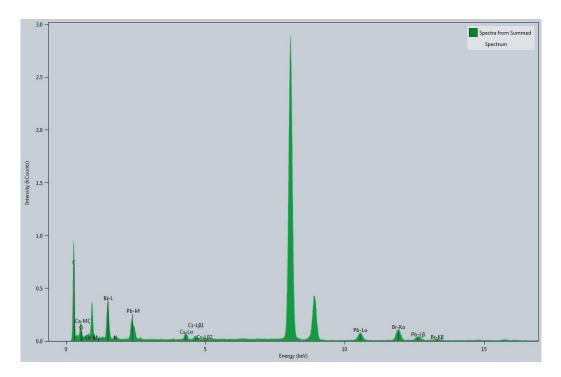
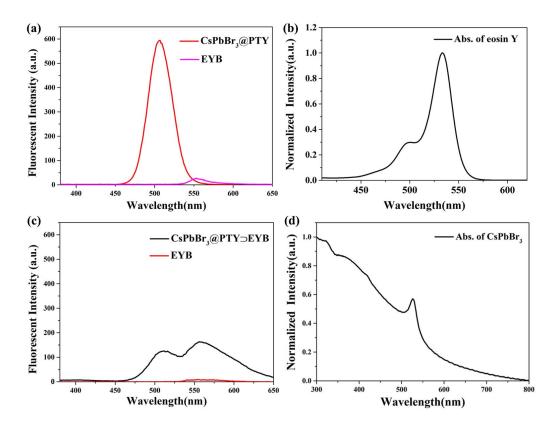
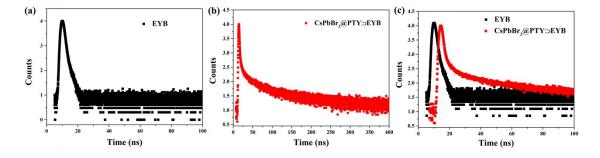


Figure S14. The Job's plot examined between Pb²⁺ and PTY, indicating the 1:2 stoichiometry, which was carried out by fluorescence spectra ($\lambda_{ex} = 360$ nm).

4. SEM and TEM images of CsPbBr₃@PTY⊃EYB

Figure S15. Representative SEM and TEM images showing the morphology of (a) (b) PTY⊃EYB (c)
Pb²⁺@PTY⊃EYB, (e) CsPbBr₃@PTY⊃EYB, TEM of (d) Pb²⁺@PTY⊃EYB, (f)
CsPbBr₃@PTY⊃EYB.

Figure S16. Glue–sol transitions of the supramolecular polymer Pb²⁺@PTY⊃EYB in isopropanol solution.

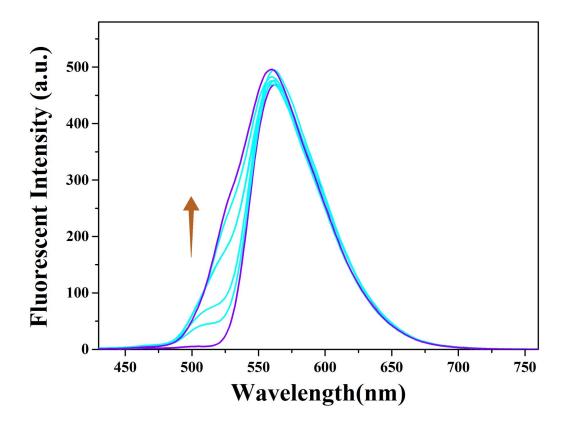

Figure S17. TEM-EDS spectra of CsPbBr₃@PTY⊃EYB.

Figure S18. (a) PL emission spectra of CsPbBr₃@PTY and EYB upon excitation at 360 nm; (b) UVvis absorption spectrum of eosin Y. (c) Fluorescence spectra of CsPbBr₃@PTY⊃EYB and EYB upon excitation at 360 nm. (d) UV-vis absorption spectrum of CsPbBr₃.

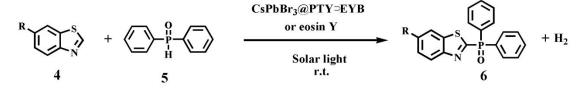
Figure S19. Fluorescence decay profiles of (a) EYB (acceptor), (b) CsPbBr₃@PTY \supset EYB (acceptordonor) and (c) the first 100 ns emission decay of the acceptor and acceptor-donor (λ_{ex} = 515 nm).

Figure S20. Fluorescence spectra of EYB upon excitation at 515 nm before and after the addition of CsPbBr₃@PTY.

 Table S1. Multiexponential fit parameters for the decay of photoluminescence

 lifetime at 360 nm.²

	$\tau_{l}(S)$	B_{I}	$\tau_2(S)$	B_2	$\tau_3(S)$	B_3	average lifetime(ns)
CsPbBr ₃ @PTY	12.16	2245.17	62.29	565.29	2.08	6117.36	8.43
CsPbBr₃@PTY⊃EY	9.72	2477.47	39.59	345.17	2.03	6847.97	5.34
В							


Table S2. Multiexponential fit parameters for the decay of photoluminescence

 lifetime at 515 nm.

	$\tau_{l}(S)$	B_1	$\tau_2(S)$	B_2	$\tau_3(S)$	B_3	average
							lifetime(ns)
EYB	0.57	2.87E+07	2.35	876.97	0.57	-2.87E+07	0.57

CsPbBr₃@PTY⊃EY	8.98	396.56	65.23	121.71	9.99	9736.83	2.07
В							

5. Study of the catalytic activities of free eosin Y and the light-harvesting system

Benzothiazole 5 (50 µmol, 1 equiv.), diphenylphosphine oxide 6 (150 µmol, 3 equiv.), eosin Y (5 µmol, 5 mol %) or CsPbBr₃@PTY⊃EYB (5 µmol, 5 mol %) were dissolved in CHCl₃ (1.5 mL) to a 25 mL Schlenk tube. The mixture was cooled by liquid nitrogen, degassed and purged with nitrogen for six times, and then stirred and irradiated by Xenon lamp (100 mW / cm²) at room temperature. After that, the organic layer was collected and concentrated after washed with saturated NaHCO₃ solution. The product was detected by GC analysis (50 °C 1 min, 15 °C/min, 250 °C) by using standard products as the reference to calculate the conversions and yields of the reaction based on the retention time. The standard product was obtained by column chromatography using petroleum ether/ethyl acetate.

Entry		Catalyst	Light irradiation	Yield [%] ^[a]
1	-H (6a)	CsPbBr₃@PTY⊃EYB	12h	83%
2	-OCH ₃ (6b)	CsPbBr₃@PTY⊃EYB	12h	81%
3	-NH ₂ (6c)	CsPbBr₃@PTY⊃EYB	12h	78%
4	-NO ₂ (6d)	CsPbBr₃@PTY⊃EYB	12h	76%

 Table S3. Photocatalytic hydrogen evolution reaction

[a] Yield determined by GC using standard products.

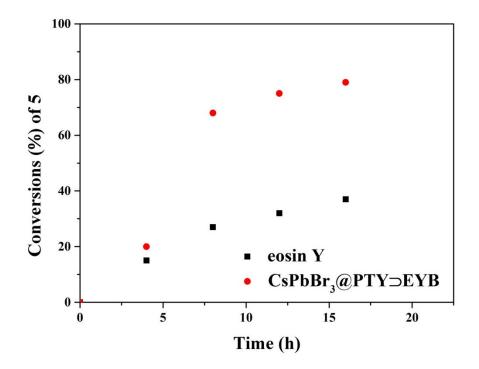


Figure S21. Conversions of 5 versus reaction time.

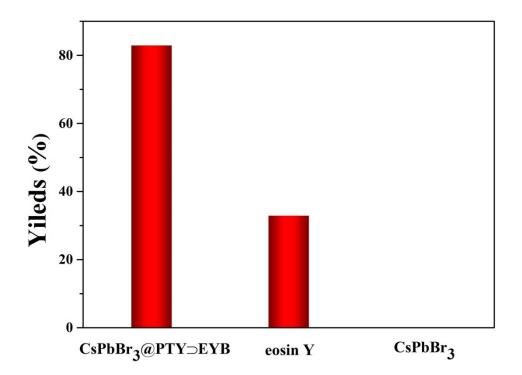


Figure S22. Yields of 6a CsPbBr₃@PTY⊃EYB, eosin Y and CsPbBr₃ after photochemical reaction 12h.

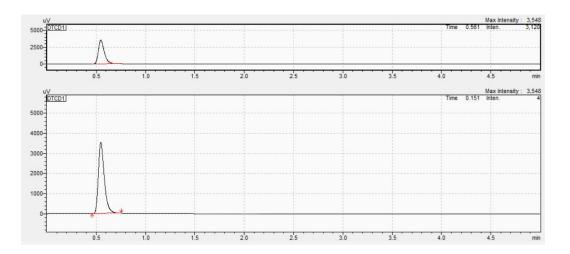


Figure S23. GC spectra of the H₂ using CsPbBr₃@PTY⊃EYB as photocatalyst upon irradiation for 24h.

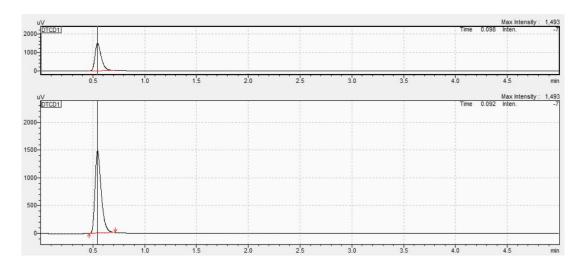


Figure S24. GC spectra of the H₂ using eosin Y as photocatalyst upon irradiation for 24h.

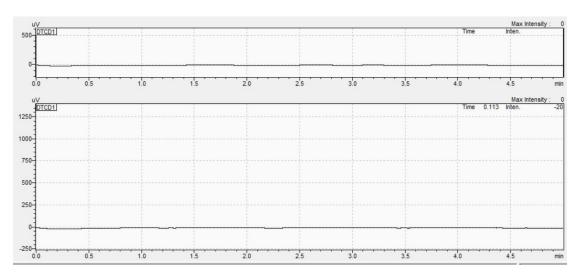


Figure S25. GC spectra of the H₂ using CsPbBr₃ as photocatalyst upon irradiation for 24h.

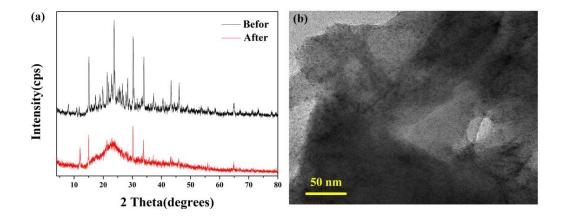


Figure S26. (a) XRD and (b) TEM images of CsPbBr₃@PTY⊃EYB after Photochemical reaction 12h.

	DFID1		-1	1	1		1	Time	Max Inter	
5000000			< 1							
-		/	1							
F-0	1.0	2.0 3.0	4.0	5.0 6.0	7.0 8.0	9.0	10.0	11.0 12.0	0 13	3.0 mi
u)	DFID1							Time (2	Max Inter	nsity: 85,063,28
40000-								Time 13	230 Inter	1. 2,94
3	3									
30000-										
1										
20000-										
1										
10000-			····							
	-		111				1		Λ.	
	H DT	4 mag	Height	Mark			h :	1 1	Α ~	A rog 9/
	RT 2 797	Area 2010193347	Height	Mark	0.000		k i		Λ~	Area %
	3. 797	3010193347	84436284	٧	0.000		k :		Λ ~	86.09
2	3. 797 3. 846	3010193347 485878815	84436284 85046925	V SV	0.000		k :		Λ ~	86.09 13.89
2	3. 797 3. 846 4. 260	3010193347 485878815 28365	84436284 85046925 8861	V SV	0.000				A ~	86.09 13.89 0.00
	3, 797 3, 846 4, 260 9, 203	3010193347 485878815 28365 1280	84436284 85046925 8861 358	V SV T	0.000 0.000 0.000				Λ ~	86.09 13.89 0.00 0.00
	3, 797 3, 846 4, 260 9, 203 9, 790	3010193347 485878815 28365 1280 20372	84436284 85046925 8861 358 5172	V SV T SV	0.000 0.000 0.000 0.000				A ~	86.09 13.89 0.00 0.00 0.00
5 (C)	3. 797 3. 846 4. 260 9. 203 9. 790 12. 001	3010193347 485878815 28365 1280 20372 3237	84436284 85046925 8861 358 5172 290	V SV T SV	0.000 0.000 0.000 0.000 0.000				A ~	86.09 13.89 0.00 0.00 0.00 0.00
	3, 797 3, 846 4, 260 9, 203 9, 790 12, 001 12, 352	3010193347 485878815 28365 1280 20372 3237 27251	84436284 85046925 8861 358 5172 290 5077	V SV T SV V	0.000 0.000 0.000 0.000 0.000 0.000					86.09 13.89 0.00 0.00 0.00 0.00 0.00
	3. 797 3. 846 4. 260 9. 203 9. 790 12. 001 12. 352 12. 719	3010193347 485878815 28365 1280 20372 3237 27251 9856	84436284 85046925 8861 358 5172 290 5077 1384	V SV T SV V	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000					86.09 13.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 3 5 5 7 7 3	3. 797 3. 846 4. 260 9. 203 9. 790 12. 001 12. 352 12. 719 12. 829	3010193347 485878815 28365 1280 20372 20372 27251 9856 1391	84436284 85046925 8861 358 5172 290 5077 1384 479	V SV T SV V V	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000					86.09 13.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
2 3 5 5 7 3 9 0	3. 797 3. 846 4. 260 9. 203 9. 790 12. 001 12. 352 12. 719 12. 829 13. 123	3010193347 485678815 28365 1280 20372 3237 27251 9856 1391 4603	84436284 85046925 8861 358 5172 290 5077 1384 479 495	V SV T SV V V V V	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000					86.09 13.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
2 3 5 5 7 3 3 9 0	3, 797 3, 846 4, 260 9, 203 9, 790 12, 001 12, 352 12, 719 12, 829 13, 123 13, 233	3010193347 485878815 28365 1280 20372 3237 27251 9856 1391 4603 2738	84436284 85046925 8861 358 5172 290 5077 1384 479 495 474	V SV T SV V V V V V V	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000					86.09 13.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
1 2 3 3 4 5 5 6 7 8 9 9 10 11 11 12 13	3. 797 3. 846 4. 260 9. 203 9. 790 12. 001 12. 352 12. 719 12. 829 13. 123	3010193347 485678815 28365 1280 20372 3237 27251 9856 1391 4603	84436284 85046925 8861 358 5172 290 5077 1384 479 495	V SV T SV V V V V	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000					Area % 86.099 13.89 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Figure S27. GC spectra of the 6a using CsPbBr₃@PTY⊃EYB as photocatalyst upon irradiation for 4h.

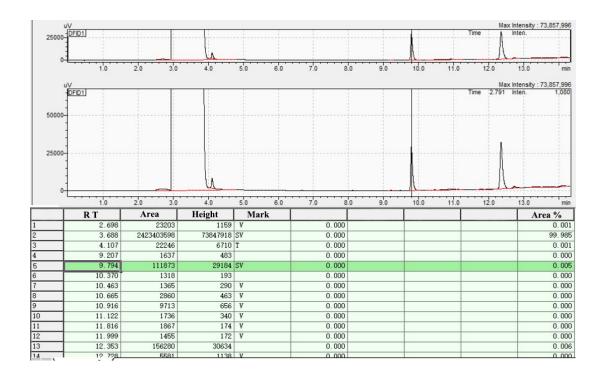


Figure S28. GC spectra of the 6a using CsPbBr₃@PTY⊃EYB as photocatalyst upon irradiation for 8h.

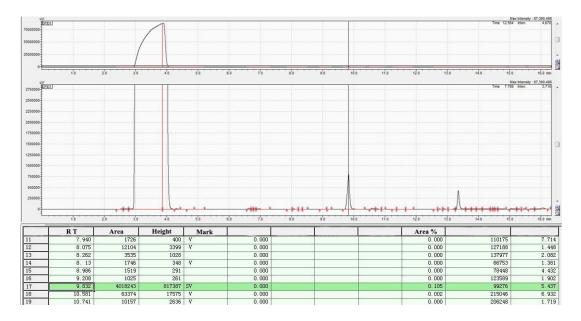


Figure S29. GC spectra of the 6a using CsPbBr₃@PTY⊃EYB as photocatalyst upon irradiation for 12h.

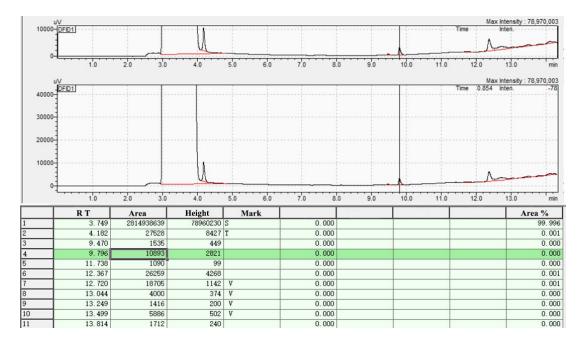


Figure S30. GC spectra of the 6a using eosin Y as photocatalyst upon irradiation for 4h.

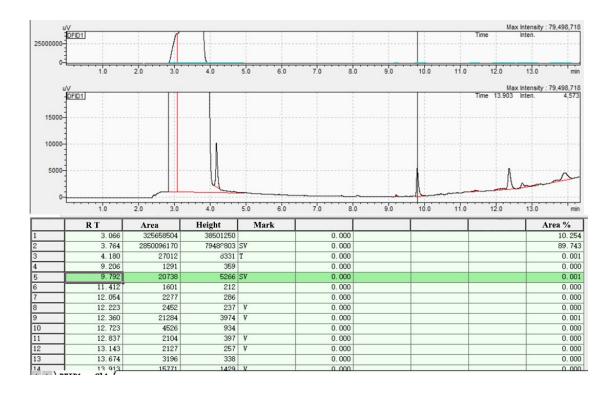


Figure S31. GC spectra of the 6a using eosin Y as photocatalyst upon irradiation for 8h.

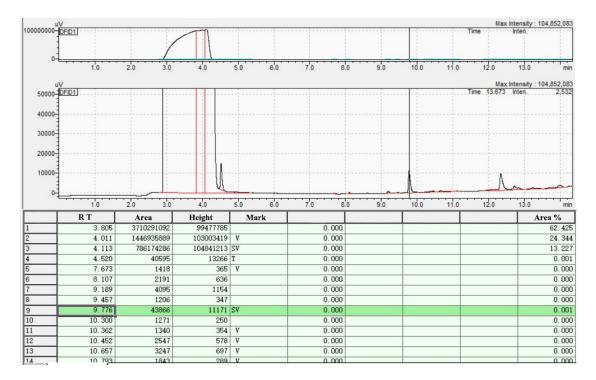


Figure S32. GC spectra of the 6a using eosin Y as photocatalyst upon irradiation for 12h.

96188128	DEID1			1 1					Time	Max Intens	
		/									
0-		1	1 R						_		
	1.0	2.0 3.0	4.0	5.0 6.0	7.0 8.0	9.0	10.0	11.0	12	0 13.0	nim (
	V									Max Intens	ity : 91,886,697
	DFID1								Time 13	3.772 Inten.	3,412
40000-											
30000-	.										
	1										
20000-	•••••										
]									1	
10000-											
	-	1	1 1				A :				
0-			UL.							1m	
0-	1.0	2.0 3.0	4.0	5.0 6.0	7.0 8.0	9.0	10.0	11.0	12	0 13.0	
0-	1.0 R T	2.0 3.0 Area	4.0 Height	5.0 6.0 Mark	7.0 8.0	9.0	10.0	11.0	12	0 13.0	o min Area %
0-					7.0 8.0	9.0	10.0	11.0	12	0 13.0	
0-	RT	Area	Height			9.0	10.0	11.0	12	0 13.0	Area %
0-	R T 3. 588	Area 2308852101	Height 83165382	Mark V	0.000	9.0	10.0	11.0	12	0 13.0	Area %
0-	R T 3.588 3.742 3.888 3.935	Area 2308852101 844760810	Height 83165382 88447068	Mark V V	0.000	9.0	10.0	11.0	12	0 13.0	Area % 52.17 19.08 17.77 10.95
0-	R T 3.588 3.742 3.888 3.935 4.342	Area 2308852101 844760810 786675220	Height 83165382 88447068 91602158	Mark V V SV	0.000 0.000 0.000	9.0	10.0	11.0	12	0 13.0	Area % 52.17 19.08 17.77
0-	R T 3.588 3.742 3.688 3.935 4.342 7.667	Area 2308852101 844760810 786675220 484751083 33199 1186	Height 83165382 88447068 91602158 91861426 10658 300	Mark V V SV T	0.000 0.000 0.000 0.000 0.000 0.000	9.0	10.0	11.0	12	0 13.0	Area % 52.17 19.08 17.77 10.95 0.00 0.00
0-	R T 3.588 3.742 3.888 3.935 4.342 7.667 8.108	Area 2308852101 844760810 786675220 484751083 33199 1186 2052	Height 83165382 88447068 91602158 91861426 10658 300 576	Mark V V SV T	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	9.0	10.0	11.0	12	0 13.0	Area % 52.17 19.08 17.77 10.95 0.00 0.00 0.00
	R T 3.588 3.742 3.888 3.935 4.342 7.667 8.108 9.195	Area 2308852101 844760810 786675220 484751083 33199 1186 2052 2568	Height 83165382 88447068 91602158 91861426 10658 300 576 756	Mark V V SV T V	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	9.0		11.0	12	0 13.0	Area % 52.17 19.08 17.77 10.95 0.00 0.00 0.00 0.00
	R T 3.588 3.742 3.888 3.935 4.342 7.667 8.108 9.195 9.785	Area 2308852101 844760810 786675220 484751083 33199 1186 2052 2568 59305	Height 83165382 88447068 91602158 91861426 10658 3000 576 756 15252	Mark V V SV T V	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	9,0		11.0	12	0 13.0	Area % 52.17 19.08 17.77 10.95 0.00 0.00 0.00 0.00 0.00 0.00
	R T 3.588 3.742 3.888 3.935 4.342 7.667 8.108 9.195 9.785 10.367	Area 2308852101 844760810 786675220 484751083 33199 1186 2052 2568 59305 1559	Height 83165382 88447068 91602158 91861426 10658 300 576 756 16552 242	Mark V V SV T V SV SV	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	9,0		11.0		0 13.0	Area % 52.17 19.08 17.77 10.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00
	R T 3.588 3.742 3.888 3.935 4.342 7.667 8.108 9.195 9.785 10.367 10.454	Area 2308852101 844760810 786675220 484751083 33199 1186 2052 2568 59305 1559 1612	Height 83165382 88447068 91602158 91861426 91861426 300 576 7562 15252 242 385	Mark V V SV T V	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	9.0		11.0			Area % 52.17 19.08 17.77 10.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0	R T 3.588 3.742 3.888 3.935 4.342 7.667 8.108 9.195 9.785 10.367 10.454 10.660	Area 2308852101 844760810 786675220 484751083 33199 1186 2052 2568 59305 1559 1612 2037	Height 83165382 88447068 91861426 10658 300 576 756 15252 242 242 335 492	Mark V V SV SV SV SV V V V V V V V V V V V	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	9.0		11.0			Area % 52.17 19.08 17.77 0.095 0.00 0.00 0.00 0.00 0.00 0.00 0.0
0- 	R T 3.588 3.742 3.888 3.935 4.342 7.667 8.108 9.195 9.785 10.367 10.454	Area 2308852101 844760810 786675220 484751083 33199 1186 2052 2568 59305 1559 1612	Height 83165382 88447068 91602158 91861426 91861426 300 576 7562 15252 242 385	Mark V V V SV T V SV V V V V V	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	9.0		11.0			Area % 52.17 19.08 17.77 10.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Figure S33. GC spectra of the 6a using eosin Y as photocatalyst upon irradiation for 16h.

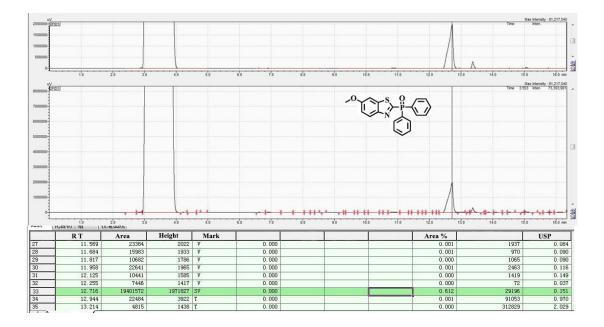


Figure S34 GC spectra of the 6b using CsPbBr₃@PTY⊃EYB as photocatalyst upon irradiation for 12h.

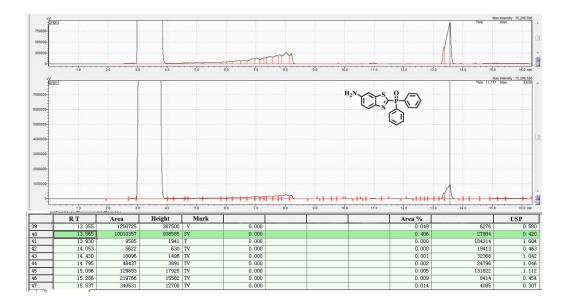


Figure S35 GC spectra of the 6c using CsPbBr₃@PTY⊃EYB as photocatalyst upon irradiation for 12h.

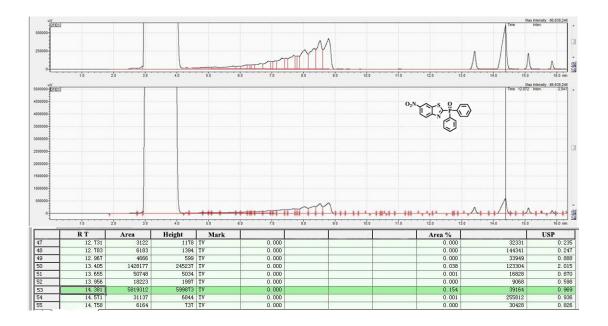


Figure S36 GC spectra of the 6d using CsPbBr₃@PTY⊃EYB as photocatalyst upon irradiation for 12h.

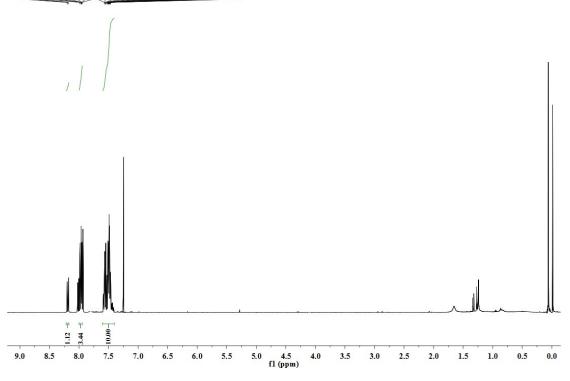


Figure S37 ¹H NMR spectrum (400 MHz, CDCl₃) of 6a.

-3.88

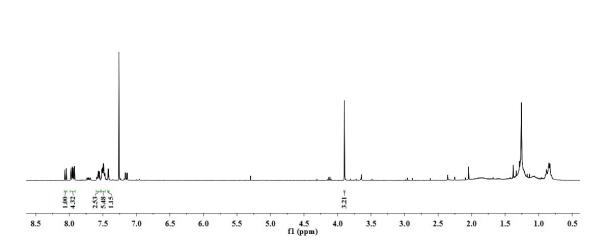
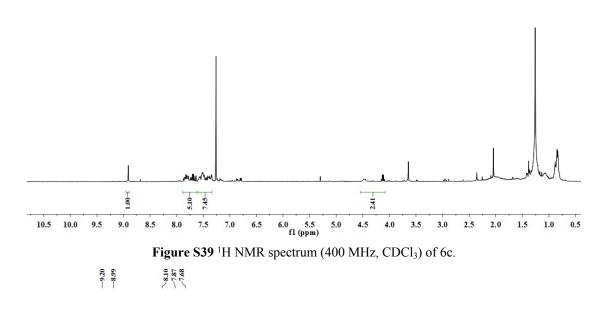



Figure S38 ¹H NMR spectrum (400 MHz, CDCl₃) of 6b.

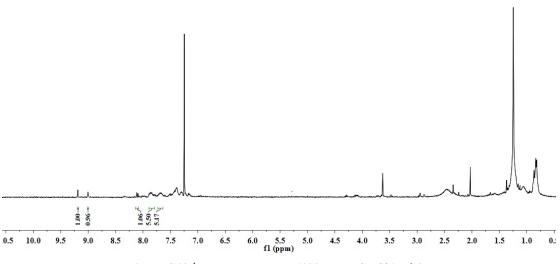


Figure S40 ¹H NMR spectrum (400 MHz, CDCl₃) of 6c.

References

- 1. C. Li, Q. Xu, J. Li, F. Yao, X. Jia, Org. Biomol. Chem. 2010, 8, 1568.
- 2. Z.-J. Li, E. Hofman, J. Li, A. H. Davis, C.-H. Tung, L.-Z. Wu, W. Zheng, *Adv. Funct. Mater.* 2018, **28**, 1704288.
- 3. S. B. Wang, B. Y. Guan and X. W. D. Lou, J. Am. Chem. Soc. 2018, 140, 5037-5040.
- 4. P. J. Yang, P. J. Ou, Y. X. Fang and X. C. Wang, Angew. Chem. Int. Ed. 2017, 56, 3992–3996
- 5. Z. Zhang, G. Yu, C. Han, J. Liu, X. Ding, Y. Yu, F. Huang, Org. Lett. 2011, 13, 4818.