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The morphologies of samples were investigated via scanning electron microscopy 

(SEM, MIRA3 TESCAN) with energy-dispersive X-ray spectroscopy (EDS) assisted 

elemental mapping and high-resolution transmission electron microscopy (HRTEM, 

JEOL, Japan) with selective area electron diffraction (SAED). The crystallizations of 

samples were studied via X-ray diffraction (XRD, Bruke D8 Advance). The valence 

states of sample components were analyzed by X-ray photoelectron spectroscopy (XPS, 

Thermo Kalpha). Surface morphologies of catalyst particles were further analyzed by 

atomic force microscope (AFM) and electrostatic force microscopy (EFM) with a 

tapping mode (Bruker Dimension Icon), and EFM measurement was conducted with a 

lift height of 122.3 nm and Vtip = 1 V. The structures of samples were investigated via 

Raman spectrum (LabRAM HR Evolution) with a laser wavelength of 532 nm and 

Fourier transform infrared spectrometer (FTIR, VERTEX 70, Bruker Co., Germany). 

Optical properties of samples were analyzed by steady-state photoluminescence (PL) 

spectrum (F-4500 FL, Japan) with a laser beam of 480 nm and UV-vis DRS 

spectrometer (Lambda 750 S, PerkinElmer). The surface areas of samples were 

measured via a Surface Area and Porosity Analyzer (ASAP 2460). Electron spin 

resonance (ESR) spectroscopy was determined by a Bruker EMX plus ESR 

spectrometer.

Electrochemical Measurements

All electrochemical measurements were implemented in a three-electrode configuration 

using as-prepared sample as the working electrode (exposed area: ~1 cm2), a graphite 

rod (φ = 5 mm × 20 mm) as the counter electrode, an Ag/AgCl electrode (saturated 



KCl) as the reference electrode for acidic and neutral media, and a Hg/HgO electrode 

as the reference electrode for alkaline medium. Before measurements, the electrode was 

first activated to a steady status by 5000 cyclic voltammetry (CV) from -0.3 to 0 V with 

a scan rate of 100 mV s-1 to clean the electrode surface to facilitate the balance of 

electrode in the electrolyte. All potentials in linear sweep voltammetry (LSV) measured 

with a scan rate of 5 mV s-1 were calibrated to a reversible hydrogen electrode (RHE) 

following the equations: E(RHE) = E (Ag/AgCl) + 0.194V + 0.059pH V, E(RHE) = E (Hg/HgO) 

+ 0.098V + 0.059pH V [1], and were calibrated for ohmic losses based on the solution 

resistance (Rs) measured from the electrochemical impedance spectroscopy (EIS) 

results: ERHE-calibrated = ERHE-measured - i *Rs [2]. The EIS were conducted at -200 mV 

based on the open circuit voltage (OCV) with frequency range from 100 kHz to 1.0 Hz 

with potential amplitude of 5 mV. The Tafel curves were measured with a scan rate of 

5 mV s-1. The Mott-Schottky plots were obtained via the impedance-potential 

measurements, in which the capacitance (C) was calculated following the equation: C 

= -1/(2πfZ), where f was the set frequency of voltage (1000 Hz) and Z was the 

impedance. Electrochemical active surface areas (ECSA) of catalysts were obtained 

from double-layer capacitance (Cdl) values which were evaluated by CV in the non-

Faradaic potential region ranging from -0.2 to 0 V with different scan rates. Moreover, 

the corresponding roughness factors (RF) were calculated by dividing Cdl based on a 

specific capacitance (Cs) of 0.06 mF cm−2 for the atomically smooth planar surface in 

1 M KOH electrolyte according to the equation: RF = Cdl/Cs [3]. The turnover 

frequencies (TOF) were inferred by the equation: TOF = I/Q, where I was the current 



of the LSV curve and the voltammetric charge (Q) was calculated by the equation: Q = 

2FN, where F was the Faraday constant (96 480 C mol-1) and N was the number of 

active sites. The calculation of Q also followed the equations: Q = CU = iU/ν, where Q 

can be obtained by integrating the CV curve measured in phosphate buffer solution 

(PBS) (pH 7). The chronoamperometry measurements were conducted at -200 mV vs 

RHE for 100 h. 

Density Functional Theory Calculations 

All density functional theory (DFT) calculations were implemented via the Vienna ab 

initio simulation package (VASP) with Perdew-Burke-Ernzerhof (PBE) 

parametrization of the generalized gradient approximation (GGA) as the exchange-

correlation functional [4]. A cutoff energy of 350 eV was adopted for plane-wave basis. 

The vacuum layer of 15 Å was built along c direction to evade periodic interactions. 

The k-point mesh was set to 2 × 2 × 2. The geometries were optimized until the energy 

was converged to 2 × 10-6 eV/atom. The Gibbs free energy change (∆GH*) for HER was 

calculated according to the formula: ∆GH* = ∆EH* + ∆EZPE - T∆S, wherein, ∆EH* = 

E(surface+H*) - Esurface - 1/2EH2, where E(surface+H*) and Esurface denote overall energy of the 

surface model with and without H* adsorption, respectively. EH2 is the energy of a 

single H2 molecule isolated in vacuum. Zero-point energy change ∆EZPE is obtained by 

vibrational frequency calculation. T∆S is estimated to be 0.2 eV to consider the entropy 

change at room temperature [1]. 

Table S1. Catalyst loading quality obtained in parallel experiments (mg).



Catalyst 1# 2# 3# 4# Average loading quality

GF 60 55 58.4 47.3  

CoMoO/GF 78.6 72.1 76.6 62.3  

CoMoOF/GF 68.8 65.5 74.3 57.6  

Loading quality 8.8 10.5 15.9 10.3 11.375

Note: The exposed area of working electrode is ~3 cm2, average catalyst loading is 

~3.79 mg cm-2.

Fig. S1. EDS spectra for a) CoMoOF/GF and b) CoMoO/GF.



Fig. S2. Co etching phenomenon observed during anodic treatment.

Fig. S3. SEM images for CoMoO/GF.

Fig. S4. SEM image for CoMoOF/GF after sonication in 1.0 M KOH for 2 h.



Fig. S5. TEM (left) and HRTEM (right) images for CoMoO/GF.

Table S2. Atomic percentages in XPS for CoMoOF/GF and CoMoO/GF.

CoMoOF/GF Atomic % CoMoO/GF Atomic %

C 1s 49.18 C 1s 54.33

Co 2p 3.9 Co 2p 4.27

Mo 3d 7.28 Mo 3d 3.53

O 1s 38.6 O 1s 37.87

F 1s 1.04 - -

Total 100 Total 100

Table S3. Area percentages of peaks in Co 2p, Mo 3d and O 1s XPS spectra.

Catalyst  Binding energy (eV) CoMoO/GF CoMoOF/GF Post-HER

Co0 795.6/779.8 0.032 0.009 -

Co2+ 798.1/782.4 0.232 0.33 0.293

Co3+ 796.7/780.6 0.306 0.323 0.083

Co 2p

Sat. 802.4/785.9 0.43 0.338 0.624

Mo4+ 230.1/233.2 0.235 0.104 0.216
Mo 3d

Mo5+ 230.9/234.1 0.249 0.097 0.409



Mo6+ 232.0/235.1 0.516 0.799 0.375

O1 530.1 0.241 0.388 0.054

O2 531.3 0.621 0.489 0.760
O 1s

O3 532.7 0.138 0.123 0.186
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Fig. S6. XPS spectra for C 1s.

4000 3000 2000 1000

Mo-O-Mo
-COO-H2O

 

 

Tr
an

sm
itt

an
ce

 (%
)

Wavenumber (cm-1)

 CoMoO/GF
 CoMoOF/GF

Fig. S7. FTIR spectrum for CoMoOF/GF and CoMoO/GF.
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Fig. S8. UV-vis DRS for CoMoOF/GF and CoMoO/GF.
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Fig. S9. PL spectra for CoMoOF/GF and CoMoO/GF.
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Fig. S10. HER polarization curves for CoMoO/GF with anodic treatment under 

different voltages in 1.0 M KOH.
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Fig. S11. HER polarization curves for CoMoO/GF with anodic treatment under 

different time in 1.0 M KOH.
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Fig. S12. Mott-Schottky plots for CoMoOF/GF and CoMoO/GF.

Fig. S13. CV curves for CoMoOF/GF and CoMoO/GF at different scan rates of 20, 40, 

60, 80, 100, 120, 140, 160, 180 mV s-1 from inner to out, respectively. 

Fig. S14. The CV curves in 0.1 M PBS for CoMoOF/GF and CoMoO/GF with a scan 

rate of 50 mV s-1.
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Fig. S15. HER polarization curves for different catalysts in 0.5 M H2SO4.
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Fig. S16. HER polarization curves for different catalysts in 0.1 M PBS.
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Fig. S17. Tafel slopes for different catalysts in 0.5 M H2SO4.
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Fig. S18. Tafel slopes for different catalysts in 0.1 M PBS.
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Fig. S19. LSV curves of CoMoOF/GF before and after 5000 CV tests in 0.5 M H2SO4.
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Fig. S20. Time-dependent current density curve of CoMoOF/GF under −200 mV (vs 

RHE) for 100 h in 0.5 M H2SO4.
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Fig. S21. LSV curves of CoMoOF/GF before and after 5000 CV tests in 0.1 M PBS.
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Fig. S22. Time-dependent current density curve of CoMoOF/GF under −200 mV (vs 

RHE) for 100 h in 0.1 M PBS.

Table S4. Comparison of HER performance of CoMoOF/GF with recently reported 

electrocatalysts in KOH electrolyte.

Catalyst Overpotential (V vs 
RHE) at η10 

Tafel slope (mV dec-

1)
Reference

meso-Fe-
MoS2/CoMo2S4

122 90 [5]

N-CoMoO4/NF 58 112.6 [6]

a-CoMoPx/CF 59 55 [4]

CoMoSx/NF 89 94 [7]

Ni-Co-Mo-S/NF 92 122.6 [8]



Co9S8-MoS2/NF 167 81.7 [9]

Ni(OH)2-NiMoOx/NF 36 38 [10]

Co-O-1T-
MoS2/SWNT

113 50 [11]

Mo-NiO/Ni 50 86 [12]

NiSe2 157 76 [13]

np-Cu53Ru47 15 30 [14]

F-Ni3S2/NF 38 78 [15]

CoFeP 114 65.3 [16]

CoMoOF/GF 79 43.3 This work

Table S5. Comparison of HER performance of CoMoOF/GF with recently reported 

electrocatalysts in H2SO4 electrolyte.

Catalyst Overpotential (V vs 
RHE) at η10 

Tafel slope (mV 
dec-1)

Reference

Co-SA/P-in situ 98 47 [17]

Ni-Co-Mo-S/NF 63 46.7 [8]

Ag@MoS2 195.7 41.1 [3]

Ni0.25Cu0.75/C 75 184 [18]

P-MoS2 131 48 [19]

CoMoP2 155 75 [20]

E-CoMo1800/CP 75 mV at –50 mA cm-2 47.9 [21]

CoMoOF/GF 94 60.2 This work
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Fig. S23. F 1s XPS spectra for post-HER CoMoOF/GF. 
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