Supporting Information

Integration of Single Co Atoms and Ru Nanoclusters Boosts

the Cathodic Performance of Nitrogen-Doped 3D Graphene

towards Lithium-Oxygen Batteries

Mingrui Liu^a, Jing Li^b, Bin Chi^a, Long Zheng^a, Yuexing Zhang^c, Qinghua Zhang^c, Tang Tang^d, Lirong

Zheng^e, Shijun Liao^{a,*}

^{*}Corresponding author, e-mail: chsjliao@scut.edu.cn, fax +86-20-87113586

Figure S1. The SEM and TEM images of (a), (d) 3DNG, (b), (e) Co/ 3DNG, (c), (f) Ru_{NC}/3DNG

Figure S2. The XRD patterns of the 3DNG, Co/3DNG, $Ru_{NC}/3DNG$ and Ru_{NC}/Co_{SA} -3DNG samples.

Figure S3. XPS survey spectra of 3DNG, Co/3DNG, Ru_{NC} /3DNG and Ru_{NC} /Co_{SA}-3DNG.

Figure S4. The distribution of the different N species.

Figure S5. The nitrogen adsorption/desorption isotherms and pore size distribution of 3DNG, Co/3DNG, Ru_{NC}/3DNG and Ru_{NC}/Co_{SA}-3DNG.

Figure S6. Wavelet transforms for the k³-weighted Co K-edge EXAFS signals of Ru_{NC}/Co_{SA} -3DNG. The maxima at 4.5 Å⁻¹ is associated with the Co-N contributions.

Figure S7. Wavelet transforms for the k³-weighted Ru K-edge EXAFS signals of Ru_{NC}/3DNG. Ru_{NC}/3DNG shows a maximum at 9.3 Å⁻¹, which indicates the dominance of metallic Ru nano crystallites.

Figure S8. R space Fitting result of Ru K-edge of Ru_{NC}/3DNG.

Sample	Shell	N ^a	R (Å) b	$\sigma^{2}(\text{Å}^{2} \cdot 10^{-3})$	ΔE0 (eV) ^d	R factor (%)
Ru _{NC} /Co _{SA} -3DNG	Co-N/O	6.0	2.08	9.1	0.3	0.3
	Co-Co	0.5	2.42	10.1	-0.2	
	Ru-N	4.1	2.05	7.8	3.5	1.3
	Ru-Ru	0.7	2.53	7.0	-0.6	
Ru _{NC} /3DNG	Ru-N	1.3	2.02	1.4	-0.5	0.8
	Ru-Ru	6.4	2.67	6.7	-6.2	

Table S1. EXAFS fitting results of Ru_{NC}/Co_{SA}-3DNG from Figure 3c-f

^{*a*}*N*: coordination numbers; ^{*b*}*R*: bond distance; ^{*c*} σ^2 : Debye-Waller factors; ^{*d*} ΔE_0 : the inner potential correction. *R* factor: goodness of fit. *S*02 were set as 0.89/0.90 for Co-O/Co-Co , which were obtained from the experimental EXAFS fit of reference CoO/Co foil by fixing CN as the known crystallographic value and was fixed to all the samples. S02 were set as 0.85/0.90 for Ru-N/O, Ru-Ru, which were obtained from the experimental EXAFS fit of reference RuO₂/Ru powder by fixing CN as the known crystallographic value and was fixed to all the samples.

Figure S9. The rate performance of 3DNG cathode (2.0-4.5 V), and corresponding discharge–charge voltage profiles different cycles under specific capacity limit of 1000 mAh g^{-1} at a rate of 200 mA g^{-1} .

Figure S10. The rate performance of Co/3DNG cathode (2.0-4.5V), and corresponding discharge–charge voltage profiles different cycles under specific capacity limit of 1000 mAh g^{-1} at a rate of 200 mA g^{-1} .

Figure S11. The rate performance of Ru_{NC}/3DNG cathode (2.0-4.1V), and corresponding discharge–charge voltage profiles different cycles under specific capacity limit of 1000 mAh g⁻¹ at a rate of 200 mA g⁻¹.

Figure S12. SEM images of pristine, discharged (2.0 V) and subsequent recharged (to 4.3V) cathodes of 3DNG (a, b, c), Co/3DNG (d, e, f), $Ru_{NC}/3DNG$ (g, h, I)

Figure S13. SEM images of Ru_{NC}/Co_{SA} -3DNG cathode after 300th cycles of discharge and charge process

Figure S14. 3D plots of the charge density difference of the LiO_2 molecule adsorption on (a) 3DNG, (b) $Ru_{NC}/3DNG$, (c) single Co atoms and (d) Ru clusters of Ru_{NC}/Co_{SA} -3DNG. The yellow and green isosurfaces represent the electron gain and lose, respectively. The corresponding isosurface value is 0.002 e/Bohr³.

Cathode	Mass loading (wt.%))	Current density (mA/g)	Discharge Capacity (mAh/g)	overpotential	references
Ru@ Porous graphene	20.34	200	17700	0.35 V	[1]
Ru-graphene aerogels	18	0.1mA/cm ²	12000	1.25 V	[2]
Ru@ VGNS@ Ni foam	43	200	23864	0.86 V	[3]
Ru-FeCoN/rGO	20	200	23905	~1.0 V	[4]
Ru@MPG	30	200	6433	~1.0 V	[5]
Ru/N-CNFs@TiO ₂	20.3	0.15 mA/cm ²	2.0 mAh/m^2	~0.94 V	[6]
Ru/3D-NrGO	9.37	200	18727	0.88 V	[7]
Ru QD/NHG		300	2700	1.04 V	[8]
Ru _{0.3} SAs-NC	2.48	0.02mA/m ²	13424	1.37 V	[9]

Table S2. Comparison of specific capacity for various Ru/graphene-based cathodes.

Ru@MWCNTP	9.0	500	~27000	1.04 V	[10]
Ru _{NC} /Co _{SA} -3DNG	8.82	100	25632	0.84 V	This work

Table S3. Comparison of cycling stability for various Ru/graphene-based cathodes.

Cathode materials	Current density (mA/g)	Discharge Capacity (mAh/g)	Cycling numbers	overpotential	references
Ru@ Porous graphene	200	1000	200	~0.94 V	[1]
Ru-graphene aerogels	0.1mA/cm^2	500	50	~1.04 V	[2]
Ru@ VGNS@ Ni foam	200	1000	200	~0.23 V	[3]
Ru-FeCoN/rGO	200	600	300	~1.04 V	[4]
Ru@MPG	100	500	55	~1.24 V	[5]
Ru/N-CNFs@TiO ₂	500	1000	132	~1.24 V	[6]
Ru/3D-NrGO	200	1000	200	~1.04 V	[7]
Ru QD/NHG	300	500	20	~0.85 V	[8]
Ru _{0.3} SAs-NC	0.02mA/m ²	1000	60	~1.29 V	[9]
Ru@MWCNTP	500	5000	50	~1.31 V	[10]
Ru _{NC} /Co _{SA} -3DNG	200	1000	300	~1.02 V	This work

References:

- [1] B. Sun, X. Huang, S. Chen, P. Munroe, G. Wang, Nano Lett. 2014, 14, 3145.
- [2] J. Jiang, P. He, S. Tong, M. Zheng, Z. Lin, X. Zhang, Y. Shi, H. Zhou, NPG Asia Materials 2016, 8, e239.
- [3] D. Su, D. Han Seo, Y. Ju, Z. Han, K. Ostrikov, S. Dou, H.-J. Ahn, Z. Peng, G. Wang, NPG Asia Materials 2016, 8, e286.
- [4] X. Zeng, C. You, L. Leng, D. Dang, X. Qiao, X. Li, Y. Li, S. Liao, R. R. Adzic, J. Mater. Chem. A 2015, 3, 11224.
- [5] X. Lin, Y. Cao, S. Cai, J. Fan, Y. Li, Q.-H. Wu, M. Zheng, Q. Dong, J. Mater. Chem. A 2016, 4, 7788.
- [6] J. Yang, H. Mi, S. Luo, Y. Li, P. Zhang, L. Deng, L. Sun, X. Ren, J. Power Sources

2017, 368, 88.

[7] M. Liu, K. Sun, Q. Zhang, T. Tang, L. Huang, X. Li, X. Zeng, J. Hu, S. Liao, ACS Sustainable Chem. Eng. 2020, 8, 6109.

[8] M. Nazarian-Samani, H.-D. Lim, S. Haghighat-Shishavan, H.-K. Kim, Y. Ko, M.-S. Kim, S.-W. Lee, S. F. Kashani-Bozorg, M. Abbasi, H.-U. Guim, D.-I. Kim, K.-C. Roh, K. Kang, K.-B. Kim, J. Mater. Chem. A 2017, 5, 619.

[9] X. Hu, G. Luo, Q. Zhao, D. Wu, T. Yang, J. Wen, R. Wang, C. Xu, N. Hu, J. Am. Chem. Soc. 2020, 142, 16776.

[10] F. Li, Y. Chen, D.-M. Tang, Z. Jian, C. Liu, D. Golberg, A. Yamada, H. Zhou, Energy Environ. Sci. 2014, 7, 1648.