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Figure S1. Schematic electronic photos for the synthesis of heterojunction catalysts.
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Figure S2. The schematic procedure of synthesizing Cu,S and In,S;, respectively.



Figure S3. SEM images of Cu,S-In,S; heterostructure in different magnetic resolution.
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Figure S4. A), B) SEM images of Cu,S sample in different magnetic resolution. C), D) TEM images of
Cu,S sample and E) The HAADF-STEM image. F) The corresponding mapping images of Cu,S sample.
G), H), 1) XPS spectra of Cu,S sample for Cu 2p and S 2p, respectively.
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Figure S5. A), B) SEM images of In,S; sample in different magnetic resolution. C), D) TEM images of
In,S; sample and E) The HAADF-STEM image. F) The corresponding mapping images of In,S; sample.
G), H), 1) XPS spectra of In,S; sample for In 3d and S 2p, respectively.
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Figure S6. A) S K-edge XANES spectra of Cu,S, In,S;, Cu,S-In,S;, and S powder. B) S K-edge XANES

spectra of Cu,S-In,S; before and after reaction. C) EXAFS in R-space for the Cu,S, In,S;, Cu,S-In,S;, and

S powder. D) EXAFS in R-space for the Cu,S-In,S; before and after reaction.

The Fourier transformed (FT) k3-weighted (k)-function of the EXAFS spectra in R-space suggested the S
species were Cu-S, In-S and S-S, in the samples. The peak at =2.45 A is attributed to the Cu-S in Cu,S,
Cu,S-In,S; and the peak =3.43 A is ascribed to the In-S in In,S3, Cu,S-In,S;, whereas the peak at =2.08 A
suggested the S-S in Cu,S-In,S;.
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Figure S7. XPS spectra of Cu,S-In,S; sample for B) Cu 2p, C) In 3d and D) S 2p, respectively.
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Figure S8. Schematic models for Cu,S A) side view and B) top view. In,S; C) side view and D) top

view.
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Figure S9. Schematic graph of the build-in electric field formed by the electron transfers from In,S; to
Cu,S as the 2D.
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Figure S10. Photograph of the testing conditions.
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Figure S11. A) UV-Vis curves of indophenol assays with NH,* ions after incubated for 2 h at room

temperature, B) Calibration curve used for calculation of NH; concentrations.
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Figure S12. A) The current densities for Cu,S-In,S; electrolyzed at different applied potentials under
one sunlight. B) UV-Vis curves of indophenol assays with NH,;* ions for Cu,S-In,S; electrolyzed at

different applied potentials after incubated for 2 h at room temperature.
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Figure S13. A) The average NH; yields and faradaic efficiency under different reaction time. B) The
corresponding UV-Vis curves of indophenol assays with NH,* ions for Cu,S-In,S; electrolyzed under
different reaction time after incubated for 2 h at room temperature. C) The current density stability

test under different reaction time.
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Figure S14. A) The average NH; yields and faradaic efficiency under different cycle test. B) The
corresponding UV-Vis curves of indophenol assays with NH,* ions for Cu,S-In,S; electrolyzed under

different cycles after incubated for 2 h at room temperature.
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Figure S15. XRD spectra of Cu,S-In,S; heterostructure, Cu,S and In,S; catalyst after reaction.



Figure S16. SEM images of Cu,S-In,S; heterostructure catalyst after reaction.



Figure S17. TEM images of Cu,S-In,S; heterostructure catalyst after reaction.
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Figure S18. XPS spectra of Cu,S-In,S; heterostructure catalyst after reaction.
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Figure S19. A) Chrono-amperometry results at the corresponding potentials. B) The current densities
for Cu,S electrolyzed at different applied potentials under one sunlight. C) UV-Vis curves of
indophenol assays with NH,* ions for Cu,S electrolyzed at different applied potentials after incubated
for 2 h at room temperature. D) Yield rates of NH; (black bar) and Faradaic efficiencies (red point) at

each given potential for Cu,S catalyst.
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Figure S20. A) Chrono-amperometry results at the corresponding potentials. B) The current densities
for In,S; electrolyzed at different applied potentials under one sunlight. C) UV-Vis curves of
indophenol assays with NH,* ions for In,S; electrolyzed at different applied potentials after incubated
for 2 h at room temperature. D) Yield rates of NH; (black bar) and Faradaic efficiencies (red point) at

each given potential for In,S; catalyst.
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Figure S21. The current densities of Cu,S-In,S; heterostructure, Cu,S and In,S; catalysts for producing

ammonia at different applied potential under one sunlight.
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Figure S22. The energy cost per NH; at the obtained current density for the reported catalysts?.
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Figure $23. A) and B) SEM images of Cu,S catalyst after reaction. C) and D) TEM images of Cu,S catalyst

after reaction. E) and F) XPS spectra of Cu,S catalyst after reaction.
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Figure S24. A) and B) SEM images of In,S; catalyst after reaction. C) and

catalyst after reaction. E) and F) XPS spectra of In,S; catalyst after reaction.
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D) TEM images of In,S;
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Figure S25. Transient photocurrent responses under repeated on-off cycles for Cu,S-In,S;

heterostructure, Cu,S and In,S; catalysts.
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Figure S26. Electrochemical impedance spectra (EIS) for Cu,S-In,S; heterostructure, Cu,S and In,S;

catalysts.
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Figure S27. Electrochemical surface area measurement of the samples using double-layer
capacitance. Cyclic voltammogram scans taken over a range of scan rates in the potential window
with mainly double-layer charging and discharging: A) Cu,S-In,S; heterostructure, B) Cu,S and C) In,S;.
D), E) and F) Double-layer charging current vs the scan rate, and the slope of the linear fit is double-

layer capacitance.
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Figure S28. N, adsorption-desorption measurements for Cu,S-In,S; heterostructure, Cu,S and In,S;.
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Figure S29. Photovoltaic device performance of Cu,S-In,S; heterostructure, Cu,S and In,S;. A) EQE
spectra and integrated current of devices. B) J-V curves of champion devices under AM 1.5 G
illumination at a scan rate of 0.02 V s scanning. C) Jy, vs. Ve curves. D) Schematic illustration of the

device.

The obtained J-V curves of Cu,S, In,S; and Cu,S-In,S; are scanned under AM 1.5 G illumination at a scan
rate of 0.02 Vs in a N,-filled glove box, and the statistics of the photovoltaic parameters of these three
devices are summarized in Figure S29A and Table S3. The results of open-circuit voltage (V,), short-
circuit current (Js), fill factor (FF), and PCE of devices are listed in Supplementary Table 3. The open-
circuit voltage (V,.) only decreases to 0.61 V (In,S3) and 0.70 V (Cu,S) from 0.75 V (Cu,S-In,S3) and the
corresponding variance percentages are 22.9% and 7.1%, respectively. And the short-circuit current (Js)
increased about 2.2 and 0.69 times, respectively, apparently improves from 5.02 mA cm=2 (In,S;3) and
9.52 mA cm2 (Cu,S) to 16.10 mA cm=2 (Cu,S-In,S;), indicating that the fabrication of heterojunction
would obviously improve the short circuit current. Meanwhile, the fill factor (FF) also become better.
For the control devices, PCE obtained under J-V curves scanning were 1.29% and 3.53%, excitingly, the
PCE of Cu,S-In,Sss device significantly increased owing to the simultaneously improved V,, J, and FF,
which could even reach a PCE of 8.31% with a V,. of 0.75 V, a J,. of 16.05 mA cm™, and an FF of 69%.
Figure S29B is the external quantum efficiency (EQE) spectra of these three Cu,S, In,S; and Cu,S-In,S;
devices, which shows significant improvement from 20% and 40 % to 75 %, owing to the improvement
of free charge yield. In addition, the integrated photocurrent densities indicate the same trend and
nearly same values with the short current observed in Figure S29A. Figure S29C shows net photocurrent
density (Jon) vsrsus effective voltage (Ver) curves under AM 1.5 G illumination of the Cu,S, In,S; and
Cu,S-In,S; devices, where J,, = J - Jg (J, is the current density under AM 1.5 G illumination, Jy is the dark

current density) and Ve = Vo - V (Vg is the voltage at which Jy, = 0, V is the applied bias voltage). As is



known, Jy, versus Ve curves illustrated the dependence of collected photogenerated charge carriers
on internal electric field. In short-circuit condition (SCC), where V = 0V, the Cu,S, In,S; and Cu,S-In,S;
devices showed various V¢ of 0.6057 V, 0.6949 V and 0.7497 V, respectively, suggesting the fabrication
of p-n heterojunction could generate bigger V. As a result, the higher Vg for the Cu,S-In,S; devices
facilitated charge transport and collection, leading to larger Jp, and Js.. In contrast, the Cu,S and In,S;
device with lower V¢ gave smaller Jy, and Js.. It is noted that the change in Vi, was in accordance with
the V, results obtained from the J-V curves, suggesting that the enhanced V,; could lead to a larger
upper limit of V.. Overall, the enhanced V,;, and improved charge collection of the Cu,S-In,S; devices

have led to significant improvement in photovoltaic parameters.?
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Figure S30. The photos for the photo-CELIV technology system.
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Figure S31. The original measured photo-CELIV curves for A) Cu,S-In,S;, D) Cu,S and G) In,S; at various
applied voltage pulse with different maximum. Ugge: = -0.6V, tye= 5 s, light pulse = 80 pJ cm=2. The
original measured photo-CELIV curves for B) Cu,S-In,S;, E Cu,S and H) In,S; at Various incident laser
intensities at fixed tye= 5 ps and the voltage pulse Uy = 0.6 V, Ugstcer = -0.6 V. The original measured
photo-CELIV curves for C) Cu,S-In,S;, F) Cu,S and 1) In,S; at various delay times (t4.) between the light
pulse = 80 W cm2and the voltage pulse Upay = 0.6 V, Uggtser = -0.6 V.
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Figure S33. The fitted value of t; and B, at different voltage for Cu,S-In,S; heterostructure.



10?
A ]
m -07v
P ® -06v
o ¢ -05v
g - * 04y
< ® : [ . - -0.3v
Py * ¢ ® g - ® 02v
= * g4 3 o, ® =
< *x» 2 e g ol
€10+ SR
*
10° 10’ 102 10°
i (LS)
5
B
m 07v
= L PY ® -06v
L *e * .., ¢ -05v
~ - * 0.4
.-g 3 3 :: * 4 * -0.3:
Lid ® sy * e :* b4 ® 02v
= ] ™ * o ® » L 4
=) - | | - LY .
R ", -
3 r T
100 107 102 103
tye (BS)
2.7
C
{2.4
100 | <i®F+——e o— o . &
o 2.1
; z
ﬁ'o 41.8 e
: (5
610-1 F n N — e 41.5
G
41.2
-0.2 -0.3 -0.4 -0.5 -0.6 -0.7
Umax (V)

Figure S34. A) Concentration of extracted charge carriers for Cu,S versus the delay time, which is
detected at different applied voltage. B) Time-dependent recombination coefficient of Cu,S. C) The

fitted value of 1 and B, at different voltage.
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Figure S35. A) Concentration of extracted charge carriers for In,S; versus the delay time, which is
detected at different applied voltage. B) Time-dependent recombination coefficient of In,S;. C) The

fitted value of 1 and B, at different voltage.
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Figure S36. XRD pattern for BaGdFs: 30%Yb3*, 5%Er3* material.






Figure S38. TEM images for BaGdFs: 30%Yb3*, 5%Er3* material and the corresponding mapping images.
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Figure S40. Photoluminescence emission curves of the BaGdFs: 30%Yb3*, 5%Er3* sample and the inset

show the corresponding photo.
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Figure S41. A) The current densities for Cu,S-In,S;-UCNPs electrolyzed at different applied potentials
under one sunlight. B) UV-Vis curves of indophenol assays with NH,* ions for Cu,S-In,S;-UCNPs
electrolyzed at different applied potentials after incubated for 2 h at room temperature. C) Chrono-
amperometry results at the corresponding potentials. D) Yield rates of NH; (black bar) and Faradaic

efficiencies (red point) at each given potential for Cu,S-In,S;-UCNPs catalyst.



A 2'2 = B 2o
2—0:4 [ —
306 r’g 1.5
E o8} <
R =t S VA B
S2f ' ' ' 2101
3-16 o i . sy ta o * g 054
18k O
2.0 ! L L
0.0 05 10 15 20 4ol 4
Time (hour) -0. -0.5
C 0.35 D , Potential (V vs. RHE) o
——-02V
030 ——-03V P
—-04V [0] 7 18
0251 . —-05V [ R , I
£0.20 : R — e rrrrrrrrr 18
.§ % —:C < ) ” 'gfé
<015 % g % ‘\ % 14
o O —— | ,,,,,,,
0.10 2 P % / /% 15
b
500 550 600 650 700 750 800 01 02 03 04 05 -06 07 08

Wavelength (nm)

Potential (V vs. RHE)

Faradaic efficiency (%)

Figure S42. A) Chrono-amperometry results at the corresponding potentials. B) The current densities

for physically mixed Cu,S-In,S; and UCNPs electrolyzed at different applied potentials under one

sunlight. C) UV-Vis curves of indophenol assays with NH,* ions for physically mixed Cu,S-In,S; and

UCNPs electrolyzed at different applied potentials after incubated for 2 h at room temperature. D)

Yield rates of NH; (black bar) and Faradaic efficiencies (red point) at each given potential for

physically mixed Cu,S-In,S; and UCNPs catalyst.
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Figure S43. The current densities of Cu,S-In,S;-UCNPs catalyst for producing ammonia at different

applied potential under one sunlight.



A00 B o
oal | —
5 (’* -
< 04 £
é 2 0.20 4
> E
T 06} =
é g 0.15 4
= 08} =
E @uju—
= ——-0.20 V——-0.30 V——-0.40 V s
O -10r —— 050V -0.60 V——-0.70 V =) ‘
0.05 b
49 1 1 L L L L L L L —
00 02 04 06 08 10 12 14 16 18 2.0 000 e mTm o ; .
Time (hOLIr) 0.2 -0.3 -0.4 05 0.6 0.7
Potential (V vs. RHE)
(30.30 I)
— 0.2V
025} —— 03V 04 3
0.4V
—— 05V =
g020f ko g osf 2
5015 o E"&g Z// _2§
& 8
= T Loz % =
<
0.10 : g 2 . % 1,8
e e g 0.1 o g
0.05F / 7 w
0'0 V////A & ‘4 Jé AZ 0
01 02 -03 -04 05 06 07 -08

500 550 600 650 700 750 800

Wavelength (nm} Potential (V vs. RHE)

Figure S44. A) Chrono-amperometry results at the corresponding potentials. B) The current densities
for UCNPs electrolyzed at different applied potentials under one sunlight. C) UV-Vis curves of
indophenol assays with NH,* ions for UCNPs electrolyzed at different applied potentials after
incubated for 2 h at room temperature. D) Yield rates of NH; (black bar) and Faradaic efficiencies (red

point) at each given potential for UCNPs catalyst.



Figure S45. SEM images for BaGdFs: 30%Yb3*, 5%Er3* material after reaction.
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Figure S46. XPS spectra for BaGdFs: 30%Yb3*, 5%Er3* material after reaction.



Supplemental Tables

Table 1. Comparison of heterogeneous catalysts for photo(electro)catalytic N, reduction.

Ammonia
Light Ammonia Detection
Year Catalyst Scavenger Generation Reference
source methods
rate
3.26 umol g
CdS/Pt None uv Nessler’s reagent 3
1 h—l
0.2 wt.% 11.5 pmol g Indophenol blue
None uv 4
Fe-doped TiO, 'h! method
B-doped Indophenol blue
None uv 1.8 pg h! 5
diamond method
Au
550-800 1100 pmol g Indophenol blue
NPs/NbSrTiOs/R Ethanol 6
nm ''em? method
u
0.87 umol g
BaTiO; None uv Nessler’s reagent 7
1 h—l
104.2 umol
BiOBr-001-Oy None A>420 nm Nessler’s reagent 8
g—l h!
Before 2017 C-modified Full 205 pmol g!
None Nessler’s reagent 9
WO;°H,O Spectrum h'!
Full 92.4 pmol g
BiOCl Methanol Nessler’s reagent 10
Spectrum Th!
1380 pmol g
BisO,Br None A>400 nm Nessler’s reagent 11
1 h—l
Indophenol blue
Full 13.3 mg m? method,
GNP/Bsi/Cr Na,S0; 12
Spectrum h! ammonia/ammonium
ISE
Full 78.6 umol g
CuCr-LDH None Nessler’s reagent 13
Spectrum Th!
CdS:MoFe 315 umol g*! Biovision,
HEPES A =405 nm 14
protein min-! fluorescence assay
Full 78.6 umol g Indophenol blue
Au/TiO,-V, Methanol 15
Spectrum Th! method
Full 78.9 pumol g
Cu-doped TiO, None Ion chromatography 16
Spectrum 'h!
114.3 umol Indophenol blue
After 2017 Au/end-CeO, Methanol 808 nm laser 17
g'h! method
Full 13.4 nmol Indophenol blue
TiO,/Au/a-TiO, None 18
Spectrum cm? h! method
Full 18.9 mg cm? indophenol blue
Au-PTFE/TS Na,S0; 19
Spectrum h! method/ ammonia-




Mo-doped W 5049

BPCNS

2-C3N,/Cs,WO;

Full
None
Spectrum
methanol >420 nm
Full
methanol

spectrum

ammonium ISE

3.324 mg h'!
Nessler’s reagent
g-lcat
9.846 mg h'!
Nessler’s reagent
g-lcat
5.627 mg h'!
Nessler’s reagent
g-lcat

20

21

22




Table 2. Comparison of heterogeneous catalysts for electrocatalytic N, reduction.

Faradaic Ammonia
Ammonia Detection
Year Catalyst Electrolyte  Efficiency Generation rate Reference
methods
(V vs. RHE)
Tetrahexahedral
0.1 M KOH 4.0% 16.48 mgh' m? Nessler’s reagent 23
Au
a-Au/CeOx—
0.1 M HC1 10.10% 8.3 mgh'! gl Indophenol blue method 24
RGO
Au cluster/TiO, 0.1 M HCI 8.11% 214mgh' gl Indophenol blue method 25
0.14% salicylic acid method,
Gas-phase 2.2 mgh'!' m?(-2.0
Fe,05/CNT (-1.0Vvs ammonia/ammonium 26
reaction vs Ag/ AgCl)
Ag/AgCl) ISE
PCN 0.1 M HCI 11.59% 8.09 mgh'! gy, Indophenol blue method 27
B-doped 0.05 M
Before 10.8% 98 mg h'! m? Indophenol blue method 28
graphene H,SO,
2019
N-doped porous 0.05 M
- 23.8 mgh'! gl Nessler’s reagent 29
carbon H,SO,
Mo, N nanorod 0.1 M HC1 4.5% 78.4mgh! g, Indophenol blue method 30
Au SAs-N-
doped porous 0.1 M HCI 22% 360 mg h'' m? Indophenol blue method 31
carbons
0.05M Indophenol blue method,
Ru SACs/N-C 29.6% 1209 mgh'! gy 32
H,SO, IC
a-
0.1 M HC1 10.16% 2321 mgh' gl Indophenol blue method 33
BisV,0,,/CeO,
hierarchical
porous 0.1 M HC1 6.9% 76.9 pg h'! mg'! Indophenol blue method 34
MoN@NC
02M NMR/colorimetric
CuO NWAs 95.8% 0.245 mmol h'! cm™? 35
Na,SO0, methods
Ni,Zn;—,BMOF 0.1 M KOH 21% 115 pg cm?h! Nessler’s reagent 36
After 0.05M
Au,Cu, 54.96% 154.91 pg h'! mg.,! Indophenol blue method 37
2019 H,SO,
0.1M
S-rich MoS, 9.81% 43.4 pg h'! mg! indophenol blue method 38
Li,SO,4
0.1M
p-Fe,0,/CC 7.69% 6.78 ng h'' cm? indophenol blue method 39
Nast4
0.1M
AuPdP NWs 15.44% 7.51 pg h! cm? indophenol blue method 40

Nast4




Table 3. Photovoltaic performance of Cu,S-In,Ss, Cu,S and In,S; photovoltage devices.

J/mA em-

Device VoV VeV , FF/% PCE/%
In,S; 0.61 0.6057 5.02 423 1.29
Cu,S 0.70  0.6949 9.51 53 3.52

Cu,S-In,S;  0.75  0.7497 16.05 69 8.31
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