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Experimental Section
Materials

Pyridine-2,6-dicarbonitrile, ZnCl,, Pd(NOs),, K,PtCly, H,PtCls, and Pd(OAC),
reagents were purchased from Aladdin. 5,5°-Dicyano-2,2’-bipyridine was purchased
from Zhengzhou Alfa Chemical Co. Ltd. CuCl,-2H,0, CoCl,-6H,0, NiCl,-6H,0,
ethanol, tetrahydrofuran (THF), and acetone was purchased from Tianjin Damao
Chemical Co. Ltd. All chemicals are of reagent grade and used directly without further

purification.

Preparation

Synthesis of BPY-CTF: The BPY-CTF was prepared according to previous
literature.5! 5,5’-Dicyano-2,2’-bipyridine (BPY, 160.8 mg, 0.78 mmol) and zinc
chloride (ZnCl,, 531.2 mg, 3.9 mmol) were placed into Pyrex tube under the protection
of nitrogen atmosphere. The Pyrex tube was evacuated, sealed, and heated to 600 °C for
48 h, with the heating rate of 1 °C min~'. The product was collected after the reaction
system cooled to room temperature. The black powder was treated with deionized water
and dilute hydrochloric acid (1 mol L"). Then, the obtained black powder was dripped
washing in turn with deionized water (3x10 mL), THF (3x10 mL), and acetone (3x10
mL). Finally, the product was dried in vacuum at 100 °C for 24 h.

Synthesis of DCP-CTF: The synthetic procedure of DCP-CTF is similar to BPY-

CTF. Pyridine-2,6-dicarbonitrile (DCP, 127.8 mg, 0.99 mmol) and zinc chloride (ZnCl,,
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667.4 mg, 4.9 mmol) were put into Pyrex tube under the protection of nitrogen
atmosphere. The Pyrex tube was evacuated, sealed, and heated to 400 °C for 10 h and
then heated 600 °C for 10 h. The heating rate is 5 °C min~!. The Pyrex tube was opened
when it was cooled to room remperature. The black powder was treated with deionized
water and dilute hydrochloric acid (1 mol L!). Then, the filtered black powder was
washed in turn with deionized water (3x10 mL), THF (3x10 mL), and acetone (3x10
mL). Finally, the product was dried in vacuum at 100 °C for 24 h.

Synthesis of CTF-M?*: The as-synthesized BPY-CTF (20 mg) was separately
treated with CuCl,-2H,0 (14.6 mg, 0.096 mmol), CoCl,-6H,0 (22.8 mg, 0.096 mmol),
NiCl,-6H,0 (22.8 mg, 0.096 mmol), Pd(NO3), (22.1 mg, 0.096 mmol), and K,PtCly,
(39.8 mg, 0.096 mmol) in deionized water (25 mL). The solution containing Co?", Ni*",
or Cu?" was heated to 60 °C for 4 h under stirring. Analogously, the solution containing
Pt>* or Pd** was stirred for 3 h at 80 °C, following which it was washed with deionized
water (3x10 mL) and ethyl alcohol (3%x10 mL). Thus, the obtained materials (named as
BPY-CTF-Cu?*, BPY-CTF-Co?", BPY-CTF-Ni?*, BPY-CTF-Pd**, and BPY-CTF-Pt*")
were dried using vacuum for 24 h at 60 °C.

The as-prepared DCP-CTF (20 mg) was treated with CuCl,-2H,0 (35.1 mg, 0.23
mmol), CoCl,-6H,0 (54.7 mg, 0.23 mmol), NiCl,-6H,O (54.7 mg, 0.23 mmol),
Pd(NO3), (53.0 mg, 0.23 mmol), and K,PtCl, (95.5 mg, 0.23 mmol) in 25 mL deionized
water (25 mL). The solution containing Co?*, Ni*", or Cu?" was heated to 60 °C for 4 h

under stirring. Analogously, the solution containing Pt>* or Pd?* was stirred for 3 h at 80
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°C. The raw product was washed with deionized water (3x10 mL) and ethyl alcohol
(3x10 mL). Thus, the obtained materials (named as DCP-CTF-Cu?", DCP-CTF-Co?,
DCP-CTF-Ni?*, DCP-CTF-Pd?**, and DCP-CTF-Pt**) were dried under vacuum for 24 h
at 60 °C.

Synthesis of BPY-CTF@Pt-MC: The BPY-CTF (50 mg) was dispersed in ultra-
pure water (20 mL) and the mixture was treated with ultrasonic for 0.5 h to form evenly
distributed suspension. Then, the suspension was added to a 10 mL deionized water
solution containing H,PtCls-6H,O (10 mg, 0.019 mmol). Then, NaBH, (8.25 g, 0.218
mol) was dissolved in deionized water (15 mL) and the mixture was added to the above-
mentioned mixed solution by dropping under stirring for 2 h. The final mixture solution
stayed overnight. Subsequently, the product was collected by filtration and washed with
deionized water (3x4 mL) and ethanol (3x4 mL). The product named BPY-CTF@Pt-
MC was dried under vacuum at 60 °C overnight.

Synthesis of BPY-CTF@Pd-MC: The palladium acetate powder (13 mg, 0.058
mmol) was dissolved in dichloromethane (15 mL) and the solution was stirred for 30
min, then theBPY-CTF (90 mg) was added in the solution. After that the mixture was
stirred for 24 h at room temperature. The obtained solid was centrifuged and extracted
with dichloromethane soxhlet for 24 h. Then, BPY-CTF@Pd-MC was dried under
vacuum at 80 °C overnight.

Synthesis of BPY-CTF@Cu-MC, BPY-CTF@Co-MC, and BPY-CTF@Ni-

MC: CuCl,:2H,O (2.546 g, 16.7 mmol), CoCl,-6H,O (3.973 g, 16.7 mmol), or
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NiCl,-6H,0 (3.969 mg, 16.7 mmol), sodium dodecylsulfate (SDS, 1.442 mg, 5 mmol),
and BPY-CTF (60 mg) was dissolved in ultra-pure water (10 mL) with stirring for 3 h,
respectively. Then, aqueous NaOH solution (1 M, 3.5 mL) was added under stirring for
30 min. Finally, aqueous NaH,PO, solution (0.34 M, 5 mL) was added to the above
solution and the mixture solution was stirred continuously for 30 min to get a uniform
solution. The solution was transferred into Teflon-lined autoclave, which was heated at
110 °C for 48 h, and 100 °C for 12 h. Then, the solution was treated and centrifuged
with water and ethanol for five times, respectively. The products were dried under
vacuum at 60 °C (named as BPY-CTF@Ni-MC, BPY-CTF@Co-MC, and BPY-
CTF@Cu-MC).

Synthesis of DCP-CTF@M: The synthetic procedure of DCP-CTF@Cu-MC,
DCP-CTF@Co-MC, DCP-CTF@Ni-MC, DCP-CTF@Pd-MC, and DCP-CTF@Pt-MC
were same as the counterpart BPY-CTF@Cu-MC, BPY-CTF@Co-MC, BPY-CTF@Ni-
MC, BPY-CTF@Pd-MC, and BPY-CTF@Pt-MC except for that BPY-CTF was
changed to DCP-CTF.

Instrumental characterization

The crystal structures of the samples were -characterized using X-ray
diffractometer (XRD, X' Pert PRO, Cu Ka, 4 = 0.1542 nm). Fourier transform infrared
(FT-IR) spectra of the samples were obtained with a Thermo Scientific Nicolet iS10
spectrometer. The morphologies of the samples were recorded by a JEOL scanning

electron microscope (SEM) equipped with an energy-dispersive spectrometer. The
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STEM images were acquired on spherical aberration correction field emission
transmission electron microscope (FEI Theims Z). TEM and HRTEM images were
obtained on a transmission electron microscope (JEOL, JEM-2100). Nitrogen sorption
measurements were conducted with a Quantachrome Autosorb apparatus at 77 K. The
specific surface areas were calculated by the Brunauer—Emmett-Teller (BET) method.
The samples were degassed at 150 °C for 12 h before measurements. The Raman
spectra were measurd by Raman Spectrometer (HORIBA Scientific LabRAM HR
Evolution). The XPS data were collected on Thermo Scientific K-Alpha spectrometer.

Electrochemical measurements of all samples were performed using an
electrochemical workstation (Princeton) with three-electrode system. The three-
electrode setup was composed of working, counter, and reference electrodes, which
were a glass carbon electrode (4 mm in diameter) coated with catalyst, a platinum plate,
and Ag/AgCl (sat. KCl), respectively. The electrocatalytic performances of the CTFs-
based electrocatalysts were tested in Nj-saturated aqueous H,SOy solution (0.5 mol L).
All the potentials were converted with respect to RHE using the following formula:

Egg = Eag/agci + 0197 V +0.0591 X pH

The scan rate of linear sweep voltammetry (LSV) was 5 mV s!. Electrochemical
impedance spectroscopy (EIS) were measured with a frequency from 100 kHz to 100
mHz and an AC voltage of 5 mV. The double layer catacitance (Cq) was obtained by
cyclic voltammetry (CV) under the potential windows from 0.00-0.20 V vs. RHE with

different scan rate of 20, 40, 60, 80 and 100 mV s-!. The differences in current density
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variation (AJ=J,—J., where J, and J, are the anodic and cathodic current, respectively) at
an overpotential of 0.10 V plotted against scan rate fitted to a linear regression enables
the estimation of Cy for CTFs-based electrocatalysts.

The catalyst ink solutions were prepared by adding 4 mg of each catalyst and 30
pL of 5 wt % Nafion in 1mL of water/ethanol (V/V=3:1) mixture solution. The mixed
suspensions were ultrasonicated for 1 h. Then, 5 puL of each catalyst ink was uniformly
dispersed on the polished glass carbon electrode and dried at room temperature. The

catalyst loading on glass carbon electrode was about 0.159 mg cm2.
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Fig. S1 P-XRD pattern of experimental and simulated AA stacking of (a) DCP-CTF and

(b) BPY-CTF.
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Fig. S2 The SEM images of (a) BPY-CTF and (b) DCP-CTF. The TEM images of (c)

BPY-CTF and (d) DCP-CTF.
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Fig. S3 The calculated pore parameters of (a) BPY-CTF and (b) DCP-CTF.
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Fig. S5 The pore size distribution profiles calculated by QS-DTF for (a) BPY-CTF-M?*
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Fig. S9 The deconvoluted C 1s, N 1s, and metal elements for BPY-CTF-M?".



Intensity (a.u.) Intensity (a.u.) Intensity (a.u.) Intensity (a.u.)

Intensity (a.u.)

DCP-CTF-Cu® C 1s

c-c/ic=C

Intensity (a.u.)

DCP-CTF-Cu* Cu 2p

Intensity (a.u.)

DCP-CTF-Cu® N 1s

2'.:)0 2{!8 2(;6 2;!4 2£I!2
Binding energy (eV)

948

944 940 936 932
Binding energy (eV)

928

406 404 402 400 398 396
Binding energy (eV)

Binding energy (eV)

Binding energy (eV)

24
DER-CIENITGIs, . ripcp DCP-CTF-Ni** Ni 2p DCP-CTF-Ni*" N 1s
- =
5 S
L o
= 2
= =
c e
] [
= e
£ c
290 288 286 284 282 870 865 860 855 850 466 464 462 460 363 SBIG
Binding energy (eV) Binding energy (eV) Binding energy (eV)
DCP-CTF-Co” C1s  ¢-c/C=C DCP-CTF-Co™ Co 2p DCP-CTF-Co™ N 1s
3 3
SLE 5,
2 2
(2] (/2]
c c
: 2
£ £
290 288 286 284 282 804 798 792 786 780 774 406 404 402 400 398 396
Binding energy (eV) Binding energy (eV) Binding energy (eV)
2+ 2+ 24
DCPCTF-Pd“C1s . o o DCP-CTF-Pd* Pd 3d DCP-CTF-Pd* N 1s
- -
3 3
© L
S S
2 =
» 7
o.c=0 CN c c
o o
- -
£ £
290 288 286 284 282 345 342 339 336 333 406 404 402 400 398 396

Binding energy (eV)

2+
DCPCTF-Pt"C1s . o o

200 288 286 284 282
Binding energy (eV)

Intensity (a.u.)

DCP-CTF-Pt* Pt 2f

78 75 72
Binding energy (eV)

69

Intensity (a.u.)

DCP-CTF-Pt* N 1s

406 404 402 400 398 396
Binding energy (eV)
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Fig. S17 Raman spectra of BPY-CTF@MC and DCP-CTF@MC.
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Fig. S18 The XPS spectra of BPY-CTF@MC and (b) DCP-CTF@MC.
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Fig. S19 The deconvoluted C 1s, N1s, and metal element for BPY-CTF@MC.
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Fig. S20 The deconvoluted C 1s, N1s, and metal element for DCP-CTF@MC.
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Fig. S21 The SEM and TEM images of BPY-CTF@Pt-MC and DCP-CTF@Pt-MC.
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Fig. S22 Exchange current density (iy) of commercial 20 % Pt/C, BPY-CTF@MC, and

DCP-CTF@MC using extrapolation method.
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Fig. S25 Cyclic voltammetry curves of CTF-M?" and CTF@MC in the region of 0.00—

0.20 V vs. RHE.
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Theoretical Calculations

BPY-CTF-Cu?* BPY-CTF-Cu-MC DCP-CTF-Cu-MC

BPY-CTF-Pt2* BPY-CTF-Pt-MC DCP-CTF-Pt?* DCP-CTF-Pt-MC
Fig. S27 Structure models for CTF-Cu?*, CTF-Cu-MC, CTF-Pt**, and CTF-Pt-MC.
Grey, pink, green and blue sphere are corresponding to C, N, Cu, and Pt atoms,

respectively.

BPY-CTF-Pt2* BPY-CTF-Pt-MC DCP-CTF-Pt2+ DCP-CTF-Pt-MC

Fig. S28 Structure models of hydrogen adsorption for CTF-Cu?*, CTF-Cu-MC, CTF-
Pt?*, and CTF-Pt-MC. Grey, pink, green, blue and white sphere are corresponding to C,

N, Cu, Pt, and H atoms, respectively.
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The projector-augmented wave pseudopotential 5> and the Perdew—Burke—Ernzerhof
(PBE) exchange-correlation function with a 450 eV plane-wave cutoff energy were
applied during the calculation. The atomic positions, cell shape, and cell volume were
fully optimized until the force on each atom was less than 0.05 eV. The Structure
models and structure models of hydrogen adsorption for CTF-Cu?*, CTF-Cu-MC, CTF-
Pt>*, and CTF-Pt-MC have been shown in Fig. S27 and S28.
The golobal reaction pathway can be represented as a three state mechanism.
1

H' +e¢ —S-H—-H,
2

(M

where S represents an adsorption site on the considered surface model.

The computation of AGy jg accomplished within its general definition related to

the first reaction step in Eq.(1):
AGH = AEH + AEZPE_TAS (2)

Here 2fH is the H-adsorption energy, AEzpE is the variation of the zero point energy

along the first step implicated in Eq.(1) and TAS represents the entropic barrier related

with the entropy losses due to the adsorption of the hydrogen atom.

The H-adsorption energy ALy is defined as:

1 n
AE, = -[E - E - -E
n = B = B~ SEwyl 3)

Where 7 is the number of hydrogen atoms adsorbed on the surface S, and £ is the DFT

energy.
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Table S1. Elemental analyses of BPY-CTF and DCP-CTF by XPS.

Cls N1s O1s

Atomic % wt % Atomic % wt % Atomic % wt %

BPY-CTF 67.17 61.52 10.48 11.20 22.35 27.27

DCP-CTF 78.31 74.44 12.12 13.44 9.57 12.11

The composition ratios (atomic %) for BPY-CTF and DCP-CTF estimated from the
XPS results.

Take the calculation of N content as an example:
N(Atomic %) * 14.01
N (wt %) =C(Atomic %) = 12.01 + N(Atomic %) * 14.01 + O(Atomic %) * 16.00
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Table S2. Comparison of specific surface areas of BPY-CTF, DCP-CTF, BPY-CTF-

M?*, DCP-CTF-M?*, BPY-CTF@MC, and DCP-CTF@MC.

Catalyst BET Specific Surface Area (m? g!)

BPY-CTF 2260
BPY-CTF-Cu?* 2180
BPY-CTF-Co?* 1560
BPY-CTF-Ni?* 1920
BPY-CTF-Pd** 1750
BPY-CTF-Pt?* 1680
BPY-CTF@Cu-MC 890
BPY-CTF@Co-MC 860
BPY-CTF@Ni-MC 850
BPY-CTF@Pd-MC 990
BPY-CTF@Pt-MC 1100
DCP-CTF 2230
DCP-CTF-Cu?* 1580
DCP-CTF-Co** 1520
DCP-CTF-Ni?* 1540
DCP-CTF-Pd** 1670
DCP-CTF-Pt?* 1460
DCP-CTF@Cu-MC 1540
DCP-CTF@Co-MC 1560
DCP-CTF@Ni-MC 1340
DCP-CTF@Pd-MC 1260
DCP-CTF@Pt-MC 1700
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Table S3. Comparison of electrocatalytic properties of BPY-CTF, DCP-CTF, BPY-

CTF-M?*, DCP-CTF-M?*, BPY-CTF@MC, and DCP-CTF@MC.

Overpotential/mV Tafel Exchange‘ Cu

Catalyst @10mA cm™ slope (mV  current density 5
versus RHE dec™!) (mA cm™2) (mF em™)

BPY-CTF 345 94.3 0.0055 1.50
BPY-CTF-Cu?* 230 77.4 0.0120 1.52
BPY-CTF-Co** 221 66.2 0.0320 1.82
BPY-CTF-Ni** 220 66.8 0.0370 1.83
BPY-CTF-Pd* 99 51.5 0.0690 8.68
BPY-CTF-Pt?* 66 47.1 0.3300 11.10
BPY-CTF@Cu-MC 470 95.6 0.0020 0.08
BPY-CTF@Co-MC 234 82.0 0.0160 1.51
BPY-CTF@Ni-MC 213 80.7 0.0430 1.93
BPY-CTF@Pd-MC 109 61.9 0.1900 6.54
BPY-CTF@Pt-MC 117 62.0 0.1700 6.20
DCP-CTF 155 534 0.0340 3.77
DCP-CTF-Cu?* 162 553 0.0140 3.20
DCP-CTF-Co?* 121 443 0.0620 4.77
DCP-CTF-Ni** 121 45.0 0.0780 4.80
DCP-CTF-Pd* 58 38.2 0.1720 12.40
DCP-CTF-Pt** 46 30.2 0.4100 16.00
DCP-CTF@Cu-MC 397 90.2 0.0050 0.80
DCP-CTF@Co-MC 181 57.4 0.0400 1.98
DCP-CTF@Ni-MC 176 55.6 0.1000 2.20
DCP-CTF@Pd-MC 71 45.6 0.2200 9.60
DCP-CTF@Pt-MC 60 30.7 0.4000 12.05
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