Supplementary material:

Computational mining of Janus Sc₂C-based MXene for spintronic,

photocatalytic, and solar cell applications

Yinggan Zhang¹, Baisheng Sa^{2,*}, Naihua Miao³, Jian Zhou³ and Zhimei Sun^{3,*}

 ¹College of Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, P. R. China
²Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
³School of Materials Science and Engineering, and Center for Integrated Computational Materials Science, International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, P. R. China

Corresponding authors: bssa@fzu.edu.cn (B. Sa), zmsun@buaa.edu.cn (Z. Sun).

Fig. S1 Phonon dispersion curves for (a) Sc₂COHF, (b) Sc₂COHCl, (c) Sc₂COHO, (d) Sc₂COHH, (e) Sc₂COF, (f) Sc₂COCl, (g) Sc₂CHF, (h) Sc₂CHCl, (i) Sc₂CFCl.

Fig. S2 The HSE06 band structures of Janus (a) Sc_2COHF , (b) Sc_2COHCl , (c) Sc_2COHH , (d) Sc_2CHF , (e) Sc_2HCl , (f) Sc_2CFCl .

Fig. S3 Various possible magnetic configurations of Sc_2CTT' including (a) one ferromagnetic state and (b-d) three antiferromagnetic states with up-spins (\uparrow) and down-spins (\downarrow) on the Sc atom.

Fig. S4 The band structure of Sc_2COF with (a) spin-up and (c) spin-down states, and (b) the spin-resolved density of states. The Fermi level is set at 0 eV as indicated by a dashed line.

Fig. S5 The band structure of Sc_2COH with (a) spin-up and (c) spin-down states, and (b) the spin-resolved density of states. The Fermi level is set at 0 eV as indicated by a dashed line.

Fig. S6 The band structure of Sc_2COOH with (a) spin-up and (c) spin-down states, and (b) the spin-resolved density of states. The Fermi level is set at 0 eV as indicated by a dashed line.

Fig. S7 (a) The energy differences between FM, AFM and NM states of Sc_2COF as a function of tensile strain. The spin-resolved density of states of Sc_2COF under (b) 5% tensile strain for FM states and (c) 6% tensile strain for AFM states, respectively.

Fig. S8 (a) The energy differences between FM, AFM and NM states of Sc₂COOH as Fa function of tensile strain. The spin-resolved density of states of Sc₂COOH under (b) 5% tensile strain for FM states and (c) 6% tensile strain for AFM states, respectively.

Fig. S9 (a) The energy differences between FM, AFM and NM states of Sc_2COH as a function of tensile strain. The spin-resolved density of states of Sc_2COH under (b) 5% and (c) 10% tensile strain for FM states, respectively.

Fig. S10 Band alignment of (a) Sc₂COHF, (b) Sc₂COHH and (c) Sc₂CHF with respect to the redox potentials of water.

Fig. S11 The density of states of Sc_2COHH/InS heterostructure.