Supplementary material:

Computational mining of Janus Sc$_2$C-based MXene for spintronic, photocatalytic, and solar cell applications

Yinggan Zhang1, Baisheng Sa2,*, Naihua Miao3, Jian Zhou3 and Zhimei Sun3,*

1College of Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, P. R. China
2Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
3School of Materials Science and Engineering, and Center for Integrated Computational Materials Science, International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, P. R. China

Corresponding authors: bssa@fzu.edu.cn (B. Sa), zmsun@buaa.edu.cn (Z. Sun).
Fig. S1 Phonon dispersion curves for (a) Sc$_2$COHF, (b) Sc$_2$COHCl, (c) Sc$_2$COHO, (d) Sc$_2$COHH, (e) Sc$_2$COF, (f) Sc$_2$COCl, (g) Sc$_2$CHF, (h) Sc$_2$CHCl, (i) Sc$_2$CFCl.
Fig. S2 The HSE06 band structures of Janus (a) Sc$_2$COHF, (b) Sc$_2$COHCl, (c) Sc$_2$COHH, (d) Sc$_2$CHF, (e) Sc$_2$HCl, (f) Sc$_2$CFCl.
Fig. S3 Various possible magnetic configurations of Sc$_2$CTT$^\prime$ including (a) one ferromagnetic state and (b-d) three antiferromagnetic states with up-spins (↑) and down-spins (↓) on the Sc atom.
Fig. S4 The band structure of Sc$_2$COF with (a) spin-up and (c) spin-down states, and (b) the spin-resolved density of states. The Fermi level is set at 0 eV as indicated by a dashed line.
Fig. S5 The band structure of Sc₂COH with (a) spin-up and (c) spin-down states, and (b) the spin-resolved density of states. The Fermi level is set at 0 eV as indicated by a dashed line.
Fig. S6 The band structure of Sc$_2$COOH with (a) spin-up and (c) spin-down states, and (b) the spin-resolved density of states. The Fermi level is set at 0 eV as indicated by a dashed line.
Fig. S7 (a) The energy differences between FM, AFM and NM states of Sc$_2$COF as a function of tensile strain. The spin-resolved density of states of Sc$_2$COF under (b) 5% tensile strain for FM states and (c) 6% tensile strain for AFM states, respectively.
Fig. S8 (a) The energy differences between FM, AFM and NM states of Sc$_2$COOH as a function of tensile strain. The spin-resolved density of states of Sc$_2$COOH under (b) 5\% tensile strain for FM states and (c) 6\% tensile strain for AFM states, respectively.
Fig. S9 (a) The energy differences between FM, AFM and NM states of Sc$_2$COH as a function of tensile strain. The spin-resolved density of states of Sc$_2$COH under (b) 5\% and (c) 10\% tensile strain for FM states, respectively.
Fig. S10 Band alignment of (a) Sc$_2$COHF, (b) Sc$_2$COHH and (c) Sc$_2$CHF with respect to the redox potentials of water.
Fig. S11 The density of states of $\text{Sc}_2\text{COHH/InS}$ heterostructure.