Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supplementary Information for

Interfacial Atomic Ni Tetragon Intercalation in NiO₂-to-Pd heterostructure triggers an Outperform HER activity than Pt Catalyst

Haolin Li,^{a,b} Sheng Dai,^d Dinesh Bhalothia,^b Alice Hu,^{a,e*} Jyh-Pin Chou^{c*} and Tsan-Yao Chen^{b,f,g*}

^a Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China

^b Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan

^c Department of Physics, National Changhua University of Education, Changhua, Taiwan

^d School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, P.R. China

^e Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China ^f Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, Taiwan ^g Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan

* **Corresponding author**: (A. H) Email: <u>alicehu@cityu.edu.hk</u>; (J.-P. C) Email: <u>jpchou@cc.ncue.edu.tw</u>; (T.-Y. C) Email: <u>tsanyao@mx.nthu.edu.tw</u>

Note S1. The energetically favorable adsorption sites of the H*, O*, H₂O, H₂, O₂ and OH on (111) facet of a transition metal.

With regard to the HER or ORR, it is generally believed that the energetically stable adsorption configuration on (111) surface of a transition-metal M catalyst (where "M" denotes Pd, Pt or Ni in this study) is the three-fold hollow site for atomic H* or O* (i.e. M-h / f site, where h and f stand respectively for the hcp hollow site and fcc hollow site), one-fold top site for H₂O molecule and H₂ molecule (i.e. M-t site), two-fold bridge site for O₂ molecule (i.e. M-b site), and top / bridge site for OH radicals (i.e. M-t / M-b site).

		NEC)	DJ(1)	11)	D4(111)	
		INIC	J_2	Pa(1)	11)	Ρι(11	1)
H*-site	$E_{\rm ads}$	O-top	-0.81	Pd-hcp	-0.57	Pt-hcp	-0.48
				Pd-fcc	-0.61	Pt-fcc	-0.53
OH-site	Eads	O-top	-0.82	Pd-top	-2.39	Pt-top	-2.42
				Pd-bridge	-2.67	Pt-bridge	-2.50
H ₂ O-site	$E_{\rm ads}$	O-top	-0.07	Pd-top	-0.27	Pt-top	-0.24
		Ni-top	-0.07				
H ₂ -site	Eads	O-top	0.02	Pd-top	-0.29	Pt-top	0.01
		Ni-top	0.01				

Table S1. The adsorption energies (E_{ads} , unit in eV) of H*, OH, H₂O and H₂ at different adsorption sites corresponding to the octahedral NiO₂, Pd (111) and Pt (111) catalyst configurations.

Table S2. The adsorption energies (E_{ads} , given in eV) of H*, OH, H₂O and H₂ at different adsorption sites corresponding to the Ni-doped NiO₂-Pd core-shell catalyst (i.e., NiO₂-Ni₁-Pd, NiO₂-Ni₂-Pd, NiO₂-Ni₃-Pd and NiO₂-Ni₄-Pd).

		NiO ₂ -Ni	₁ –Pd	NiO ₂ -Ni	₂ –Pd	NiO ₂ -Ni	₃ –Pd	NiO ₂ -Ni	₄ –Pd
H*-site	$E_{\rm ads}$	Pd-hcp1	-0.56	Pd-hcp1	-0.55	Ni-hcp	-0.52	Ni-hcp	-0.51
		Pd-hcp2	-0.57	Pd-hcp2	-0.56	Pd-hcp1	-0.55	Pd-hcp1	-0.55
		Ni-fcc	-0.61	Ni-fcc	-0.61	Pd-hcp2	-0.58	Pd-hcp2	-0.58
		Pd-fcc	-0.61	Pd-fcc	-0.60	Ni-fcc	-0.59	Ni-fcc	-0.58
						Pd-fcc	-0.59	Pd-fcc1	-0.59
								Pd-fcc2	-0.61
								Pd-fcc3	-0.61
OH-site	Eads	Pd-top1	-2.45	Pd-top1	-2.45	Pd-top1	-2.46	Pd-top1	-2.46
		Pd-bridge1	-2.73	Pd-bridge1	-2.76	Pd-bridge1	-2.75	Pd-top2	-2.44
								Pd-top3	-2.45
								Pd-bridge1	-2.75
								Pd-bridge2	-2.75
								Pd-bridge3	-2.64
H ₂ O-site	Eads	Pd-top1	-0.36	Pd-top1	-0.35	Pd-top1	-0.32	Pd-top1	-0.31
								Pd-top2	-0.36
								Pd-top3	-0.37
H ₂ -site	Eads	Pd-top1	-0.36	Pd-top1	-0.36	Pd-top1	-0.33	Pd-top1	-0.31
								Pd-top2	-0.37

Table S3. The adsorption energies (E_{ads} , given in eV) of H*, OH, H₂O and H₂ at different adsorption sites corresponding to the Ni-doped NiO₂-Pd core-shell catalyst (i.e., NiO₂-Ni₇-Pd, NiO₂-Ni₁₀-Pd and NiO₂-Ni₃₂-Pd).

		NiO ₂ -Ni	7–Pd	NiO ₂ -Ni	NiO ₂ -Ni ₁₀ -Pd		i ₃₂ –Pd
H*-site	E_{ads}	Ni-hcp	-0.49	Ni-hcp	-0.47	Pd-hcp	-0.44
		Pd-hcp1	-0.54	Pd-hcp1	-0.54	Pd-fcc	-0.48
		Pd-hcp2	-0.58	Pd-hcp2	-0.58		
		Ni-fcc1	-0.56	Ni-fcc1	-0.51		
		Ni-fcc2	-0.58	Ni-fcc2	-0.56		
		Pd-fcc1	-0.62	Pd-fcc1	-0.59		
		Pd-fcc2	-0.63	Pd-fcc2	-0.59		
OH-site	E _{ads}	Pd-top1	-2.44	Pd-top1	-2.39	Pd-top	-2.37
		Pd-top2	-2.46	Pd-top2	-2.38	Pd-bridge	-2.65
		Pd-top3	-2.47	Pd-top3	-2.42		
		Pd-bridge1	-2.70	Pd-bridge1	-2.72		
		Pd-bridge2	-2.74	Pd-bridge2	-2.66		
		Pd-bridge3	-2.75	Pd-bridge3	-2.61		
H ₂ O-site	$E_{\rm ads}$	Pd-top1	-0.29	Pd-top1	-0.26	Pd-top	-0.31
		Pd-top2	-0.35	Pd-top2	-0.34		
		Pd-top3	-0.38	Pd-top3	-0.35		
H ₂ -site	Eads	Pd-top1	-0.31	Pd-top1	-0.31	Pd-top	-0.27
		Pd-top2	-0.37	Pd-top2	-0.37		

Table S4. The calculated zero-point energy (ΔE_{ZPE} , unit in eV) for different model catalysts, including the seven NiO₂-Ni_d-Pd, Pd(111), NiO₂ and Pt(111).

Ni ₁	Ni ₂	Ni ₃	Ni ₄	Ni ₇	Ni ₁₀	Ni ₃₂	Pd(111)	NiO ₂	Pt(111)
0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.30	0.14

Table S5. Reaction energy barrier (ΔE) (given in eV) of the three HER steps "Volmer" (ΔE_{Volmer}), "Heyrovsky" ($\Delta E_{Heyrovsky}$) and "Tafel" (ΔE_{Tafel}) on the different surface models.

	I. Volmer	II. Heyrovsky	III. Tafel
	(eV)	(eV)	(eV)
NiO ₂ –Ni ₁ –Pd	1.109	0.781	-1.432
NiO ₂ –Ni ₂ –Pd	1.162	0.963	-1.629
NiO ₂ Ni ₃ Pd	1.104	0.765	-1.646
NiO ₂ Ni ₄ Pd	1.100	0.763	-1.533
NiO ₂ Ni ₇ Pd	1.155	0.754	-1.418
NiO ₂ -Ni ₁₀ -Pd	1.165	0.935	-1.606
NiO ₂ -Ni ₃₂ -Pd	1.173	0.907	-1.442
NiO ₂	1.660	4.177	2.600
Pd(111)	1.120	0.850	1.463
Pt(111)	0.740	0.417	1.466

Table S6. The calculated lattice mismatch (in %) between Pd and NiO₂ (denoted as Pd–NiO₂), Ni and NiO₂ (denoted as Ni–NiO₂), Ni and Pd (denoted as Ni–Pd) for different heterostructural NiO₂–Ni_d–Pd model (d = 1 to 4, 7, 10 and 32).

	Ni ₁	Ni ₂	Ni ₃	Ni ₄	Ni ₇	Ni ₁₀	Ni ₃₂
Pd-NiO ₂	0.1%	0.5%	0.5%	0.5%	1.0%	1.6%	0.3%
Ni–NiO ₂	2.0%	2.3%	2.4%	3.2%	1.8%	1.7%	0.1%
Ni–Pd	2.0%	2.3%	2.5%	3.7%	2.8%	3.2%	0.4%

Table S7. Bader charge population of the triatomic adsorption site on surfaces of the different model catalysts. Excess charge (ne^- , relative to the d electrons of its bulk atoms) of the triatomic site of the proposed NiO₂–Ni_d–Pd model catalyst and three transition metal reference models (Pd(111), Pt(111) and Ni(111)). The triatomic site selected for charge analysis is the hcp-site with the weakest E_{ads} -H* on each surface model, the corresponding data is listed in Table S1 to S3.

	Excess charge
	(e ⁻)
NiO ₂ –Ni ₁ –Pd	0.079
NiO ₂ -Ni ₂ -Pd	0.058
NiO ₂ -Ni ₃ -Pd	0.137
NiO ₂ -Ni ₄ -Pd	0.132
NiO ₂ -Ni ₇ -Pd	0.145
NiO ₂ -Ni ₁₀ -Pd	0.191
NiO ₂ -Ni ₃₂ -Pd	0.355
Pd(111)	0.109
Pt(111)	0.128
Ni(111)	0.063

Table S8. The calculated d-band center (ε_d , given in eV) of the selected triatomic M-hcp sites on the Pd(111), Ni(111), NiO₂–Ni₄–Pd and Pt(111) models corresponding to Figure 4(d).

	Pd(111)	Ni(111)	NiO ₂ -Ni ₄ -Pd	Pt(111)
$\epsilon_{d} (eV)$	-1.73	-1.26	-2.31	-2.25

Figure S1. Top and oblique views of the different surface models, together with the calculated E_f of each configuration below. (a) NiO₂–Ni₁–Pd, (b) NiO₂–Ni₂–Pd, (c) NiO₂–Ni₃–Pd, (d) NiO₂–Ni₄–Pd, (e) NiO₂–Ni₇–Pd, (f) NiO₂–Ni₁₀–Pd, (g) NiO₂–Ni₃₂–Pd, (h) Pd(111), (i) Pt(111), (j) Ni(111), (k) layered-octahedral NiO₂. The grey, green, gold and red spheres represent Pd, Ni, Pt and O atoms, respectively.

Figure S2. Top and oblique views of the different NiO₂–Ni₄–Pd models, together with the calculated E_f of each configuration below. (a) 3-1-compact (pyramid), (b) 3-1-far, (c) 2-2-compact, (d) 2-2-far, (e) 1-3-compact, (f) 1-3-far, (g) 2-1-1-compact, (h) 1-2-1-compact, (i) 1-1-2-compact. For clarity, the different NiO₂–Ni₄–Pd systems are denoted by the 4-Ni doping sequence in the Pd shell from bottom to top. The grey, green and red spheres represent Pd, Ni and O atoms, respectively.

Figure S3. Top view atomic adsorption structures of H*, OH, H₂O and H₂ (panels from left to right) at different adsorption sites on the (a) NiO₂–Ni₁–Pd, (b) NiO₂–Ni₂–Pd, (c) NiO₂–Ni₃–Pd and (d) NiO₂–Ni₄–Pd surface models. For clarity, the grey, green, red and blue spheres stand for Pd, Ni, O and H atoms, respectively.

Figure S4. Top view atomic adsorption structures of H*, OH, H₂O and H₂ (panels from left to right) at different adsorption sites on the (a) NiO_2-Ni_7-Pd , (b) $NiO_2-Ni_{10}-Pd$, (c) $NiO_2-Ni_{32}-Pd$, (d) Pd(111) / Pt(111) and (e) NiO_2 surface models. For clarity, the grey, green, red and blue spheres stand for Pd, Ni, O and H atoms, respectively.

Figure S5. Top view structures of the "Volmer" step (H₂O dissociation) in HER on the different surface models, including (a) NiO_2-Ni_1-Pd , (b) NiO_2-Ni_2-Pd , (c) NiO_2-Ni_3-Pd , (d) NiO_2-Ni_4-Pd , (e) NiO_2-Ni_7-Pd , (f) $NiO_2-Ni_{10}-Pd$, (g) $NiO_2-Ni_{32}-Pd$ (h) Pd(111), (i) Pt(111), (j) layered-octahedral NiO_2 . The IS and FS respectively stands for the initial state and final state. The grey, green, yellow, red and blue spheres stand for Pd, Ni, Pt, O and H atoms, respectively.

Figure S6. Top view structures of the "Heyrovsky" step (H* recombination) in HER on the different surface models, including (a) NiO_2-Ni_1-Pd , (b) NiO_2-Ni_2-Pd , (c) NiO_2-Ni_3-Pd , (d) NiO_2-Ni_4-Pd , (e) NiO_2-Ni_7-Pd , (f) $NiO_2-Ni_{10}-Pd$, (g) $NiO_2-Ni_{32}-Pd$ (h) Pd(111), (i) Pt(111), (j) layered-octahedral NiO_2 . The IS and FS respectively stands for the initial state and final state. The grey, green, yellow, red and blue spheres stand for Pd, Ni, Pt, O and H atoms, respectively.

Figure S7. Top view structures of the "Tafel" step (H* recombination) in HER on the different surface models, including (a) NiO_2-Ni_1-Pd , (b) NiO_2-Ni_2-Pd , (c) NiO_2-Ni_3-Pd , (d) NiO_2-Ni_4-Pd , (e) NiO_2-Ni_7-Pd , (f) $NiO_2-Ni_{10}-Pd$, (g) $NiO_2-Ni_{32}-Pd$ (h) Pd(111), (i) Pt(111), (j) layered-octahedral NiO_2 . The IS and FS respectively stands for the initial state and final state. The grey, green, yellow, red and blue spheres stand for Pd, Ni, Pt, O and H atoms, respectively.

Figure S8. Free energy diagram of the HER including the energy reaction barriers of the three steps "Volmer" (ΔE_{Volmer}), "Heyrovsky" ($\Delta E_{Heyrovsky}$) and "Tafel" (ΔE_{Tafel}) for (a) NiO₂–Ni₁–Pd, (b) NiO₂–Ni₂–Pd, (c) NiO₂–Ni₃–Pd, (d) NiO₂–Ni₄–Pd, (e) NiO₂–Ni₇–Pd, (f) NiO₂–Ni₁₀–Pd, (g) NiO₂–Ni₃₂–Pd, (h) Pd(111), (i) layered-octahedral NiO₂ and (j) Pt(111) model catalysts. For clarity, the three reaction pathways of the "Volmer", "Heyrovsky" and "Tafel" on different surface models are highlighted in blue, orange and green, respectively.