Supporting Information

Self-Supported NiCo₂O₄/Cu_xO Nanoforest with Electronically Modulated

Interfaces as Efficient Electrocatalyst for Overall Water Splitting

Qi Ouyang^a, Zuotao Lei^{*a}, Qun Li^b, Mingyang Li^a and Chunhui Yang^{*a,}

a MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage,

School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001,

People's Republic of China

b National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, and Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China.

* Corresponding author: leizuotao@hit.edu.cn; yangchh@hit.edu.cn

Fig. S1 (a-b) Low, (c) high magnification SEM images and (d) cross-section SEM image. of Cu(OH)₂/Cu. The region enclosed by the red circles is made by pressing Cu(OH)₂/Cu on the conductive adhesive with tweezers.

Fig. S2 (a) Low and (b) high magnification SEM images of Cu_xO/Cu .

Fig. S3 (a) Low and (b) high magnification SEM images of NiCo-precursor/Cu.

Fig. S4 (a) Low and (b) high magnification SEM images of NiCo₂O₄/Cu.

Fig. S5 (a) Low and (b) high magnification SEM images of NiCo-precursor/Cu(OH)₂/Cu.

Fig. S6 (a) Low and (b) high magnification SEM images of $NiCo_2O_4/Cu_xO/Cu$.

Fig. S7 SEM images of NiCo-precursor/Cu(OH)₂/Cu prepared with different hydrothermal reaction time: (a, b) 0.5 h, (c) 1 h, (d) 2 h, (e) 3 h, (f) 4 h, (g) 5 h, (h) 6 h, (i) 7 h, (j) 8 h.

Fig. S8 EDS spectrum of NiCo₂O₄/Cu_xO. C is attributed to the carbon support film in the copper mesh.

Fig. S9 HAADF images and the corresponding line-scan elemental distribution curves of $NiCo_2O_4/Cu_xO$.

Fig. S10 The XRD patterns of the Cu(OH)₂ and Cu_xO scraped off the substrate carefully.

Fig. S11 The XRD patterns of the NiCo-precursor and NiCo₂O₄ scraped off the substrate carefully.

Fig. S12 Survey XPS spectra of NiCo₂O₄/Cu_xO/Cu.

Fig. S13 (a) High-resolution XPS spectra of Cu 2p of Cu foam before and after i~t test (1.65 V vs. RHE) for 1 h. (b) LSV curves of NiCo₂O₄/Cu_xO/Cu-4/6/8 before and after deducting the current of Cu foam.

Fig. S14 The mass activity of the catalysts: (a) OER and (b) HER. The mass loadings are 4.10 mg cm⁻² for NiCo₂O₄/Cu_xO/Cu, 2.90 mg cm⁻² for NiCo₂O₄/Cu, and 3.57 mg cm⁻² for Cu_xO/Cu, respectively.

Fig. S15 The TOF of the catalysts: (a) OER and (b) HER. The TOF values are calculated by the following equation: TOF (s⁻¹) = ($|j| \times A$) / (n × F × m). *j* (A cm⁻²) is the current density. A is the geometric surface area of the electrode (1 cm²). n is the number of electrons transferred in the reaction (n = 4 in OER and n = 2 in HER). F is the Faraday constant (96500 C mol⁻¹). m (mol) is the mole number of transition metals loaded on the Cu foam. It should be noted that the mass loading includes the Cu substrate oxidized during calcination, which has no special morphology and is mostly covered by the nanotrees, and all transition metals atoms are regarded as active sites (including Ni, Co, and Cu), making the real TOF underestimated seriously. The molar ratio of NiCo₂O₄ to Cu_xO in NiCo₂O₄/Cu_xO/Cu is determined by ICP results (Table S2). The molar ratio of Cu₂O to CuO in Cu_xO is determined by XPS results (Table S3).

Fig. S16 Faradaic efficiency evaluated by the drainage method: (a) Device of drainage method. (b) H_2 and (d) O_2 collected at 0, 500, 1000, 1500, 2000, 2500 s. (c) The volume of H_2 and O_2 as a function of time.

Fig. S17 The XRD patterns of Co_xO_y and Ni_xO_y .

Fig. S18. The SEM images of (a) Co_xO_y/Cu_xO/Cu and (b) Ni_xO_y/Cu_xO/Cu.

Fig. S19. LSV curves of (a) OER and (b) HER for $NiCo_2O_4/Cu_xO/Cu$, $Co_xO_y/Cu_xO/Cu$, and $Ni_xO_y/Cu_xO/Cu$.

Fig. S20 Multipotentiometry measurement for catalysts in KOH (1 M) solution. The two current fluctuations of $NiCo_2O_4/Cu_xO/Cu$ in HER (~20 h and ~51 h) are caused by the replenishment of the internal filling solution of the reference electrode.

Fig. S21 (a) Low and (b) high magnification SEM images of NiCo₂O₄/Cu_xO/Cu after overall water splitting reaction in KOH (1 M) solution for 30 h.

Fig. S22 TEM image of NiCo₂O₄/Cu_xO after overall water splitting reaction in KOH (1 M) solution for 30 h.

Fig. S23 (a) HRTEM image and (b) SAED pattern of NiCo₂O₄/Cu_xO/Cu after overall water splitting reaction in KOH (1 M) solution for 30 h.

Fig. S24 XRD patterns of $NiCo_2O_4/Cu_xO/Cu$ after HER for 150 h and OER for 125 h in KOH (1 M) solution.

Fig. S25 High-resolution XPS spectra of (a) Ni 2p, (b) Co 2p, (c) Cu 2p, and (d) O 1s of $NiCo_2O_4/Cu_xO/Cu$ after HER for 150 h and OER for 125 h in KOH (1 M) solution.

Fig. S26 CV curves of (a) NiCo₂O₄/Cu_xO/Cu-4, (b) NiCo₂O₄/Cu_xO/Cu-6, (c) NiCo₂O₄/Cu_xO/Cu-8, (d) NiCo₂O₄/Cu, (e) Cu_xO/Cu, and (f) bare Cu foam with different scan rates (15, 20, 25, 30, 35, 40 mV s⁻¹) from 1.10 V to 1.20 V (vs. RHE).

Fig. S27 (a) Polarization curves and (b) corresponding Tafel curves of $NiCo_2O_4/Cu_xO/Cu-4/6/8$ for OER. (c) Polarization curves and (d) corresponding Tafel curves of $NiCo_2O_4/Cu_xO/Cu-4/6/8$ for HER.

Fig. S28 Half of the capacitive current density ($\Delta j/2$) at 1.15 V (vs. RHE) plotted against different scan rates.

Fig. S29 DFT-optimized structure of $Cu_2O(111)$ in (a) the main view and (b) top view.

Fig. S30 DFT-optimized structure of $NiCo_2O_4$ (311) in (a) the main view and (b) top view.

Fig. S31 DFT-optimized structure of NiCo₂O₄(311)/Cu₂O (111) in top view.

Catalysts	$S_{\rm BET}$ (m ² g ⁻¹)
NiCo ₂ O ₄ /Cu _x O/Cu-4	26.4225
NiCo ₂ O ₄ /Cu _x O/Cu-6	28.3969
NiCo ₂ O ₄ /Cu _x O/Cu-8	30.2371
NiCo ₂ O ₄ /Cu	20.7776
Cu _x O/Cu	20.3029
Cu foam	12.3401

Table S1 BET surface area of catalysts.

Sample	Measure dilut	d element con ed solution (m	tent in the ng L ⁻¹)	Measured element content in the diluted solution (mmol L ⁻¹)				
	Со	Ni	Cu	Co	Ni	Cu		
Pre-NiCo ₂ O ₄	4.9230	2.4071		0.0835	0.0410			
NiCo ₂ O ₄	3.2820	1.5963		0.0557	0.0272			
NiCo ₂ O ₄ /Cu _x O	1.9306	0.988	3.632	0.0327	0.0168	0.0567		

Table S2 Element content of samples measured by ICP-OES.

*The diluted solution is made by dissolving the solid sample in an acid solution and diluting to a concentration range of 1-10 ppm.

	Ni		Со		Cu		0		
atom%	Ni ³⁺	Ni ²⁺	Co ³⁺	Co ²⁺	Cu ²⁺	Cu^+	M-O	O_u	H ₂ O
Cu _x O	-	-	-	-	46.12	53.88	34.35	40.38	25.27
NiCo ₂ O ₄	50.91	49.09	49.95	50.05	-	-	38.52	40.93	20.55
NiCo ₂ O ₄ /Cu _x O	55.22	44.78	43.27	56.73	70.52	29.48	39.48	47.80	12.72

Table S3 XPS peak area ratio of elements with different valence states.

Table S4 The etching rate of Cu.									
Samula	The total amount of Cu etched (mg)								
Sample	6 h	12 h	24 h	30 h	36 h	48 h			
NiCo ₂ O ₄ /Cu _x O	0.0745	0.1081	0.1241	0.1285	0.1327	0.1340			
Bare Cu foam	0.9446	1.2936	1.8534	2.0541	2.2207	2.4631			

*The geometric area of the working electrode is 1 cm^2 and the current density maintains at 10 mA cm^2 for the OER. The total amount of Cu etched in alkaline solution is quantified by ICP-OES, including Cu ions in the electrolyte and Cu⁰ deposited on the counter electrode.

Catalyst	Current density (mA cm ⁻²)	Overpotential vs. RHE (mV)	Electrolyte	Tafel slope (mV dec ⁻¹)	Reference
	10	218	1014		
NiCo ₂ O ₄ /Cu _x O/Cu	20	256	I.0 M	77.8	This work
	50	285	KUH		
Cu/CuO/	10	500	1.0 M	00	Angew. Chem. Int.
Cu(OH)2 film	10	580	Na ₂ CO ₃	90	<i>Ed.</i> , 2015, 54 , 2073
	10	200	1.0 M	50	Angew. Chem. Int.
INIC0204/INI	10	290	NaOH	55	Ed., 2016, 55 , 6290
NiCo O /Ni	10	250	1.0 M	50.2	J. Catal., 2018, 357,
NIC0204/INI	10	330	KOH	39.2	238
Cu Cu O/CuO	10	200	1.0 M	64	Angew. Chem., Int.
	10	290	KOH	04	Ed. 2017, 56, 4792
Cu ₂ P/CuO	10	315	1.0 M	74.8	ChemElectroChem
Cusiveuo	10	515	KOH	74.0	2018, 5, 2064
Reduced NiCo ₂ O ₄	10	240	1.0 M	52	J. Am. Chem. Soc.,
1000000111000204	10		KOH		2018, 140 , 13644
	10	230	1.0 M		ACS. Appl. Mater.
NiFeCuP@Ni ₃ S ₂ /NiF			КОН	42	Interfaces,
					2020,12,36268-36276
	50	302	1.0 M KOH		ACS Appl. Mater.
FeCoNi-NiCo ₂ O ₄ /CC				71.5	Interfaces, 2017, 9,
					36917
	10	260	1.0 M		Appl. Catal. B
Ni ₃ S ₂ /MnO ₂			КОН	61	Environ., 2019, 254,
			-		329-338
CoS _v	10	375	1.0 M	77	J. Mater. Chem. A,
			КОН		2020, 8 , 7647-7652
meso-Fe-	10	290	1.0 M	65	ACS Nano, 2020, 14 ,
$MoS_2/CoMo_2S_4$			КОН		4141-4152
~ ~ ~ ~ ~			1.0 M		ACS Appl. Mater.
Co-Se-S-O	10	254	KOH	86.1	<i>Interfaces</i> 2018, 10 ,
					8231-8237
WO ₃ -Vo	10	590	0.5 M	183.3	CCS Chem., 2020, 2,
N'O IDU			H_2SO_4		1553-1561
NICO LDH	10	367	I M	40	Nano Lett., 2015, 15,
nanosheets			KOH		1421 - 1427
NiCoP/NF	10	280	I M	87	Nano Lett., 2016, 16,
			KOH		//18-//25

Table S5 Comparison of OER electrocatalytic properties with other non-noble catalysts.

	Current	Overpotential		Tafel slone	Reference	
Catalyst	density	vs. RHE	Electrolyte	$(mV doo^{-1})$		
	(mA cm ⁻²)	(mV)				
	10	92	1 0 M			
NiCo ₂ O ₄ /Cu _x O/Cu	20	165	I.0 M	70.8	This work	
	50	215	коп			
			1 O M		Angew. Chem.	
VOOH/Ni	10	164	I.0 M	104	Int. Ed., 2017,	
			KUH		56 , 573	
			10 M		Angew. Chem.	
NiCo ₂ O ₄ /Ni	10	110	1.0 M	49.7	Int. Ed., 2016,	
			NaOH		55 , 6290	
NG- O /N	10	200	1.0 M	71.0	J. Catal., 2018,	
NIC0204/INI	10	200	KOH	/1.2	357 , 238	
			1014		Appl. Catal. B	
Ni_3S_2/MnO_2	10	102	I.0 M	69	Environ., 2019,	
			KOH		254 , 329-338	
			1014		ACS Nano,	
meso-Fe-	10	122	I.0 M	90	2020, 14, 4141-	
$M0S_2/C0M0_2S_4$			коп		4152	
	10	135	1014		J. Am. Chem.	
Reduced NiCo ₂ O ₄			KOH	52	Soc., 2018, 140,	
					13644	
					ACS Appl.	
FeCoNi-	20	151	1.0 M	114.2	Mater.	
NiCo ₂ O ₄ /CC	20		КОН		Interfaces,	
					2017, 9 , 36917	
CueCu Se			1 O M		J. Mater. Chem.	
$\operatorname{Cu}(u)\operatorname{Cu}_2S(u)$	20	203	I.0 M	63	A, 2020, 8 ,	
NICOU _{2-x} S _x			KUH		14746	
			1 O M		Appl. Catal. B	
(Ni, Fe)S ₂ @MoS ₂	10	130	I.0 M	101.2	Environ., 2019,	
			KUH		247 , 109	
Co ₃ O ₄ /MoS ₂			1 O M		Appl. Catal. B	
	10	205	I.0 M	98	Environ., 2019,	
			KUH		248 , 202	
			1 O M		Nano Lett.,	
NiCoP/NF	10	32	I.U M KOU	37	2016, 16,	
			коп		7718-7725	

Table S6 Comparison of HER electrocatalytic properties with other non-noble catalysts.

Catalyst	Current density (mA cm ⁻²)	Potential (V)	Electrolyte	Reference
NiCo ₂ O ₄ /Cu _x O/Cu	10	1.61	1.0 M KOH	This work
VOOH/Ni	10	1.61	1.0 M KOH	Angew. Chem. Int. Ed., 2017, 56 , 573
Ni-Fe-O	10	1.64	1.0 M KOH	Adv. Energy Mater., 2018, 8 , 1701347
NiCo ₂ O ₄ /Ni	10	1.65	1.0 M NaOH	Angew. Chem. Int. Ed., 2016, 55 , 6290
NiCo ₂ O ₄ /Ni	10	1.61	1.0 M KOH	J. Mater. Chem. A, 2018, 6 , 20076
CoP/N-CNT	10	1.64	1.0 M KOH	J. Am. Chem. Soc. 2018, 140 , 2610–2618
meso-Fe- MoS ₂ /CoMo ₂ S ₄	10	1.62	1.0 M KOH	ACS Nano, 2020, 14 , 4141-4152
Reduced NiCo ₂ O ₄	10	1.61	1.0 M KOH	J. Am. Chem. Soc., 2018, 140 , 13644
FeCoNi- NiCo ₂ O ₄ /CC	50	1.65	1.0 M KOH	ACS Appl. Mater. Interfaces, 2017, 9 , 36917
Cu _{2.75} Fe _{0.25} P	100	1.85	1.0 M KOH	Nanoscale, 2020, 12 , 17769-17779
(Ni, Fe)S ₂ @MoS ₂	10	1.56	1.0 M KOH	<i>Appl. Catal. B</i> , 2019, 247 , 109
NiFe-Oxide/CC	10	1.67	1.0 M KOH	ACS Appl. Mater. Interfaces, 2017, 9 , 41906
S-NiFe ₂ O ₄ /Ni	10	1.65	1.0 M KOH	Nano Energy, 2017, 40 , 264
NiCoP/NF	10	1.58	1.0 M KOH	Nano Lett., 2016, 16, 7718–7725

Table S7 Comparison of overall water splitting electrocatalytic properties with other non-noble catalysts.

A. (Ni		C	Co		Cu		0		
Atom%	Ni ³⁺	Ni ²⁺	Co ³⁺	Co ²⁺	Cu^{2+}	Cu^+	M-O	O_u	H ₂ O	
Fresh	55.22	44.28	43.27	56.73	70.52	29.48	39.48	47.80	12.72	
After HER	55.62	44.38	45.36	54.64	65.64	34.36	21.97	52.46	25.57	
After OER	55.42	44.58	45.86	54.14	77.72	22.28	27.57	56.12	16.31	

Table S8 XPS peak area ratio of elements with different valence states of NiCo₂O₄/Cu_xO/Cu before and after long-term stability tests.

Table S9 Bader charges analysis.									
Samples	Element	Number of atoms	Number of valence electrons in an atom	Total number of valence electrons	Total number of valence electrons in optimized configuration	Total number of valence electrons transferred			
	Cu	72	11	792	750.84713	-			
Cu ₂ O	0	36	6	216	257.15290	-			
	Cu ₂ O	108	-	1008	1008.00007	-			
	Co	32	9	288	245.80387	-			
	Ni	16	10	160	144.23292	-			
$N1CO_2O_4$	0	64	6	384	441.96326	-			
	NiCo ₂ O ₄	112	-	832	832.00005	-			
	Со	32	9	288	246.11820	0.31433			
	Ni	16	10	160	143.91724	-0.31568			
$NiC_{2} \cap /Cu \cap$	O-NiCo ₂ O ₄	64	6	384	447.48381	5.52055			
$N_1Co_2O_4/Cu_2O$	Cu	72	11	792	745.49570	-5.35143			
	O-Cu ₂ O	36	6	216	256.98512	-0.16778			
	NiCo ₂ O ₄ /Cu ₂ O	220	-	1840	1840.00007	-			