Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supplementary Data

Physical and chemical activation mechanisms of carbon materials based on the microdomain model

Inchan Yang, Meenkyoung Jung, Myung-Soo Kim, Dalsu Choi and Ji Chul Jung*

Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea

*Corresponding author

E-mail address: jcjung@mju.ac.kr

Figure S2. Formation of the molecular stacking and microdomain unit from aromatic planar

molecules in liquid crystal mesophase pitch.²

Figure S3. The activation mechanisms proposed by Yoon's group.³

Figure S4. TEM images of SC in various scales.

Sample	Activating agent	Activation temperature	Activation time			
		[°C]	[h]			
ASCC600	CO ₂	600	2			
ASCC700	CO ₂	700	2			
ASCC800	CO ₂	800	2			
ASCC900	CO ₂	900	2			
ASCC1000	CO ₂	1000	2			
ASCK600	КОН	600	2			
ASCK700	КОН	700	2			
ASCK800	КОН	800	2			
ASCK900	КОН	900	2			
ASCK1000	КОН	1000	2			

Table S1. Activating conditions for preparation of ASCXYs.

Active material	Loading mass	Thickness of electrode ^a
	[mg cm ⁻²]	[μm]
SC	2.9	40
ASCC600	2.8	40
ASCC700	2.8	40
ASCC800	2.6	40
ASCC900	2.5	40
ASCC1000	1.4	39
ASCK600	2.1	40
ASCK700	1.8	40
ASCK800	1.3	38
ASCK900	1.4	40
ASCK1000	1.7	39

Table S2. Loading mass and electrode thickness of the prepared electrodes.

^a Thickness of electrodes are included thickness of current collector (20 μ m).

Sample	S _{BET} ^a	D _{avg} ^b	V _{micro} ^c	V_{total} d	Burn-off
	[m ² g ⁻¹]	[nm]	[cm ³ g ⁻¹]	[cm ³ g ⁻¹]	[%]
SC	503.2	1.7	0.22	0.22	0.00
ASCC600	575.2	1.7	0.24	0.24	3.39
ASCC700	583.6	1.7	0.25	0.25	4.97
ASCC800	647.2	1.8	0.27	0.27	29.27
ASCC900	1014.5	1.7	0.41	0.40	63.06
ASCC1000	2991.1	2.4	1.33	1.81	85.74
ASCK600	1985.0	1.9	0.92	0.93	37.33
ASCK700	2587.2	2.5	1.35	1.16	47.79
ASCK800	3414.5	2.5	1.78	2.13	52.51
ASCK900	2648.3	3.2	1.68	2.12	56.17
ASCK1000	1512.3	4.6	0.53	1.72	83.05

Table S3. Physical properties of SC, ASCC, and ASCK samples.

^a Specific surface area; ^b Average pore diameter; ^c Micropore volume; ^d Total pore volume

Gravimetric capacitance [F g ⁻¹]					Volumetric capacitance [F cm ⁻³]					R _{ret} ^a			
Current density	0.1	0.5	1	3	5	7	0.1	0.5	1	3	5	7	[%]
[A g -]													
SC	2.3	0.8	0.6	0.6	0.4	0.1	3.1	1.8	1.1	0.9	0.6	0.2	19.5
ASCC600	2.9	1.3	0.8	0.6	0.3	0.1	4.1	1.8	1.1	0.9	0.5	0.2	17.9
ASCC700	3.4	1.6	1.4	0.7	0.4	0.2	4.7	2.2	2.0	1.0	0.5	0.2	13.1
ASCC800	4.8	3.2	1.8	1.4	0.9	0.2	6.3	4.2	2.3	1.8	1.2	0.3	12.7
ASCC900	13.1	8.3	5.3	2.1	1.1	0.7	16.3	10.3	6.6	2.6	1.3	0.9	13.9
ASCC1000	26.8	22.1	17.9	14.0	8.1	4.6	20.0	16.5	13.3	10.4	6.3	3.5	25.9
ASCK600	20.6	10.2	5.2	0.9	0.2	0.1	21.9	10.8	5.5	1.0	0.2	0.1	2.6
ASCK700	23.4	17.2	12.4	3.3	3.1	2.1	19.6	14.4	10.4	2.8	2.6	1.7	16.7
ASCK800	31.2	27.4	23.1	12.5	7.6	5.0	21.8	19.2	16.1	8.7	5.3	3.5	21.5
ASCK900	20.8	19.8	18.5	14.2	11.0	9.1	14.9	14.2	13.3	10.2	7.9	6.5	49.0
ASCK1000	18.2	16.0	14.8	11.1	8.6	7.9	16.2	14.3	13.1	9.9	7.7	7.0	53.5

Table S4. Specific capacitances and retention ratios of the fabricated electric double-layer capacitors.

^a Retention ratio with increasing current density: calculated from the ratio of specific capacitance at 0.1 A g^{-1} and 7 A g^{-1} .

References

- R. E. Franklin, Acta. Crystallogr., 1951, 4, 253; R. E. Franklin, Proc. Roy. Soc. Lond. A, 1951,
 209, 196.
- 2 S. H. Yoon, Y. Korai and I. Mochida, *Carbon*, 1996, **34**, 83.
- D. -W. Kim, H. -S. Kil, K. Nakabayashi, S. -H. Yoon and J. Miyawaki, *Carbon*, 2017, **114**, 98.