Supporting Information

In-situ Al₂O₃ Incorporation Enhances the Efficiency of CuIn(S,Se)₂ Solar Cells Prepared from Molecular-Ink Solutions

Wilman Septina,¹ Christopher P. Muzzillo,² Craig L. Perkins,² Anne Curtis Giovanelli,¹ Thomas West,¹ Kenta K. Ohtaki,³ Hope A. Ishii,³ John P. Bradley,³ Kai Zhu,² Nicolas Gaillard.^{1*}

¹Hawaii Natural Energy Institute, University of Hawaii, 1680 East-West Rd POST 109, Honolulu, HI 96822

²National Renewable Energy Laboratory, 15013 Denver W Pkwy, Golden, CO 80401

³Hawaii Institute of Geophysics & Planetology, University of Hawaii, Honolulu, Hawaii 96822, USA

*Corresponding Authors

E-mail: ngaillar@hawaii.edu

Figure S1. TG-DSC of ink made from CuCl-InCl₃-thiourea dissolved in methanol.

Figure S2. Raman spectra measured on as-deposited (Al-CIS) and selenized (Al-CISSe) films. The Raman spectrum of the Al-CISSe is identical to that of standard CuInSe₂, with a slight right-shift due to the presence of some sulfur in the film.¹

Figure S3. Secondary electron images of (a) Al-CISSe and (b) CISSe films.

Figure S4. AES of oxygen region spectra taken from the bulk of (a) CISSe (72 spectra) and (b) Al-CISSe (83 spectra), excluding spectra from the interfaces (surface and Mo). (c) AES depth profiling of CISSe film.

Figure S5. (a) SEM-EDX mapping across the Al-CISSe film where AlO_x segregates were observed on the surface of the film and inside the bulk. Characteristic X-ray energies of Al and Se exhibit some overlap (Al-K α : 1.486 eV, Se-L α : 1.379 eV), as a result, their apparent distributions in the maps show some mirroring with each other, and AES was used to determine composition. (b) SEM-EDX mapping of the CISSe film. Note that the white agglomerates observed in both SEM images of Al-CISSe and CISSe films are byproducts of the focused ion beam (FIB) process used to prepare the samples.²

Figure S6. STEM high angle annular dark field (HAADF) image of Al-CISSe corresponding to the bright field image in Fig. 4a. Bright spots in Fig. 4a appear as dark in this image.

Figure S7. Diffuse reflectance spectrum of Al-CISSe and CISSe films and their Kubelka-Munk plots to estimate the optical band gaps.

Figure S8. SEM-EDX mapping of Al-CISSe device (SLG/Mo/Al-CISSe/CdS/ZnO/ITO). Note that X-ray energies of Al and Se (Al-K α : 1.486 eV, Se-L α : 1.379 eV), Cu and Zn (Cu-L α : 0.928 eV, Zn-L α : 1.012 eV) exhibit some overlap. The white agglomerates observed in the SEM image are byproducts of the FIB process, as observed also in Figure S5.

References

[1] E.P. Zaretskaya, V.F. Gremenok, V. Riede, W. Schmitz, K. Bente, V.B. Zalesski and O.V. Ermakov, *J. Phys. Chem. Solids*, 2003, **64**, 1989.

[2] D. Abou-Ras, B. Marsen, T. Rissom, F. Frost, H. Schulz, F. Bauer, V. Efimova, V. Hoffmann and A. Eicke, *Micron*, 2012, **43**, 470.