Electronic Supplementary Information

Drastic enhancement of carbon dioxide adsorption in fluoroalkyl-modified poly(allylamine)

Athanasios Koutsianos,^{a,†} Louise B. Hamdy,^a Chun-Jae Yoo,^b Jason J. Lee,^b Marco Taddei,^{a,‡} Jagoda M. Urban-Klaehn,^c Jerzy Dryzek,^d Christopher W. Jones,^b Andrew R. Barron,^{a,e,f} and Enrico Andreoli^a*

^a Energy Safety Research Institute, Swansea University, Bay Campus, Swansea, SA1 8EN, UK

^b School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

^c Energy and Environment S&T, Idaho National Laboratory, Idaho Falls, ID 83415, USA

^d Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland

^e Department of Chemistry and Department of Materials Science and Nanoengineering, Rice University, Houston, TX 77005, USA

^f Faculty of Engineering, Universiti Teknologi Brunei, Brunei Darussalam

† Current Address: Anorganische Chemie, Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany

‡ Current Address: Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa 56124, Italy

* <u>e.andreoli@swansea.ac.uk</u>

Contents

- SEM-EDX: Figure S1 & Figure S2
- FTIR: Figure S3
- Gravimetric water uptakes: Figure S4
- CO₂ gravimetric uptakes: Figure S5
- CO₂ uptake plain PAA: Figure S6
- CO₂ uptakes under simulated flue gas conditions: Figure S7
- CO₂ adsorption-desorption TGA profiles: Figure S8
- In-situ FTIR: Figure S9
- CHN elemental analyses: Table S1
- Literature on DAC sorbents performance: Table S2
- PALS: Figure S10 & Table S3
- References

SEM-EDX

Figure S1. SEM micrographs of PAA-C₆₀ (a and b) and F2-PAA-C₆₀ (c and d). Scale bar is a) 300 μ m b) 10 μ m c) 300 μ m and d) 20 μ m.

Figure S2. Energy dispersive X-ray spectra of F1-PAA- C_{60} at two different points. Inset image shows broader range of the same spectrum

FTIR

The IR spectra of the vacuum conditioned PAA-C₆₀ and F1-PAA-C₆₀ differ only in the peak present at 1165 cm⁻¹ in the F1-PAA-C₆₀ spectrum assigned to the C-O stretching of alcohols. In Figure S3, the spectral features of the vacuum evacuated PAA-C₆₀ are assigned to their respective vibrational modes. Starting from the left: the broad absorption peak above 3000 cm⁻¹ is associated to the amine N-H stretching,¹ the two sharper peaks coming right after at 3000-2500 cm⁻¹ are due to the methylene bridge C-H stretching,^{2, 3} the doublet centred at 1600 cm⁻¹ to N-H deformation,^{1, 4} the single peak at 1450 cm⁻¹ to the C-H scissoring,¹ and the last three doublets to C-H wagging, C-N stretching, and N-H bending at 1300, 1100, and 900 cm⁻¹, respectively.¹⁻³

Figure S3. Peak assignments of the FTIR spectrum of PAA-C₆₀

Figure S4. Gravimetric water uptake of PAA-C₆₀ and F1-PAA-C₆₀

Figure S5. Gravimetric CO₂ uptake curves for PAA-C₆₀, F1-PAA-C₆₀, and F2-PAA-C₆₀ in pure CO₂, 10% CO₂, and 400 pm CO₂ at 30, 50, 70 and 90 °C, except for F2-PAA-C₆₀ at 10% CO₂ which was not tested.

Figure S6. CO_2 uptake of plain PAA. A methanolic solution of PAA was initially conditioned at 90 °C under Ar atmosphere until constant weight to achieve the complete evaporation of methanol solvent. The resulting PAA sample was subsequently exposed to CO_2 to study its CO_2 uptake gravimetrically (inset).

Equilibrium CO₂ uptakes under simulated flue gas conditions

Figure S7. CO_2 uptake vs temperature for PAA-C₆₀ (black), F1-PAA-C₆₀ (red) under 10% CO_2 (the gravimetric curves corresponding to each data point are provided in Figure S4).

Adsorption-desorption cycles

Figure S8. a) CO₂ adsorption–desorption profiles of F-PAA-C₆₀ (adsorption: 100% CO₂ at 25 °C; desorption 100% Ar at 90 °C). (b) CO₂ working capacities of the sorbent plotted over the number of adsorption-desorption cycles.

Figure S9. FTIR spectra for CO₂ sorption by PAA-C₆₀ and F₁PAA-C₆₀ at 30 °C over 1h.

CHN elemental analyses

Table S1. Results from the elemental analysis of PAA-C₆₀, F1-PAA-C₆₀ and F2-PAA-C₆₀ conditioned at 110 $^{\circ}$ C under vacuum.

Sample	N (wt%)	N (mol)	C (wt%)	C (mol)	H (wt%)	H (mol)
PAA-C ₆₀	17.70	1.26	62.78	5.23	9.74	9.66
F1-PAA-C60	13.52	0.96	55.29	3.95	8.55	8.48
F2-PAA-C60	13.62	0.97	57.74	4.81	7.96	7.90

The weights obtained from elemental analysis are converted into moles from which the molar ratios were calculated as follows (MW = molecular weight; AW = atomic weight)

<u>PAA-C₆₀</u>

 $PAA = (allylamine)_X = (AA)_X = (C_3H_7N)_X$

 $PAA-C_{60} = (C_3H_7N)_X (C_{60})_Y (H_2O)_Z$, even after conditioning the sample at 110 °C under vacuum, there is some moisture in the materials as they are extremely hydrophilic and they exposed to the environment for some time before being inserted in the CHN analyzer.

 $C_{5.23} H_{9.66} N_{1.26} = (C_3 H_7 N)_X (C_{60})_Y (H_2 O)_Z = C_{3X+60Y} H_{7X+2Z} N_X$ $3X+60Y=5.23; 7X+2Z=9.66; X=1.26 \rightarrow Y=0.024, Z=0.42$ $MW(C_3 H_7 N) = 57.09 \text{ g/mol} \rightarrow PAA= MW(C_3 H_7 N)^*1.23 = 71.93 \text{ g}$ $MW(C_{60}) = 720.66 \text{ g/mol} \rightarrow C_{60} = MW(C_{60})^*0.024 = 17.30 \text{ g}$ $MW(H_2 O) = 18.02 \text{ g/mol} \rightarrow H_2 O = MW(H_2 O)^*0.42 = 7.57 \text{ g}$ $PAA:C_{60} \text{ dry weight ratio } 80.6/19.4$

PAA-C₆₀ dry = $(AA)_{1.26}$ (C₆₀)_{0.024} = $(AA)_1$ (C₆₀)_{0.019}

<u>F-PAA-C₆₀</u>

 $PAA = (allylamine)_x = (C_3H_7N)_X$

Glycidyl 2,2,3,3,4,4,5,5-octafluoropentyl ether (GOF) = $C_8H_8F_8O_2$

 $F2-PAA-C_{60} = (C_{3}H_{7}N)_{X}(C_{60})_{Y}(C_{8}H_{8}F_{8}O_{2})_{Z}(H_{2}O)_{E} = C_{3X+60Y+8Z}H_{7X+8Z+2E}N_{X}O_{2Z+E}F_{8Z}$

3X+60Y+8Z = 4.81; X = 0.97; 7X+8Z+2E = 7.90

We also use the mass balance for the sample: $C+H+N+F+O = 100 \rightarrow F+O = 100-C-H-N = 100-57.74-13.62-7.96 = 20.68 \rightarrow (2Z+E)*AW(O)+8Z*AW(F) = (2Z+E)*15.999+8Z*18.998 = 20.68 \rightarrow 183.982Z + 15.999E = 20.68 (eq.1)$

Replacing X = 0.97 in the hydrogen balance, 7X+8Z+2E = 7.90, we get 8Z+2E=1.11 (eq. 2). Based on equations 1 and 2, we calculate Z=0.098 and E=0.16.

Using the mass balance of carbon, 3X+60Y+8Z = 4.81, we calculate Y = 0.019.

So F2-PAA-C₆₀= $(C_3H_7N)_{0.97}$ (C₆₀)_{0.019} (C₈H₈F₈O₂)_{0.098} (H₂O)_{0.16} or for the dry material:

F2-PAA-C₆₀ dry = $(AA)_1 (C_{60})_{0.020} (F)_{0.101}$

Similarly, we calculate the composition of F1-PAA-C₆₀ = $(C_3H_7N)_{0.97}$ (C₆₀)_{0.019} (C₈H₈F₈O₂)_{0.073} (H₂O)_{0.57} or for the dry material:

F1-PAA-C₆₀ dry = $(AA)_1 (C_{60})_{0.020} (F)_{0.075}$

Literature on DAC sorbents performance

Table S2. Polyamine-based direct air capture CO₂ adsorbents (from 2011 – 2020). PEI: Poly(ethylenimine) ; PAA: Poly(allylamine) ; PPG: poly(propylene guanidine) ; TEPA: Tetraethylenepentamine ; TPTA: Tripropylene-tetramine ; TREN: Tris (2-amino ethyl)amine ; PEHA: Pentaethylenehexamine ; APTES: 3-(aminopropyl)triethoxysilane ; AEAPDMS-NFC: N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane nanofibrilated cellulose.

Adsorbent	Amine	amine wt%	Temp	CO ₂ conc.	Pressure	CO ₂	Amine Eff.	Ref.
		[mmol N g ⁻¹]	. [°C]	[% RH]		capacity	[mol CO ₂	
						[mmol g ⁻¹]	permol of	
							amine]	
PAA-C ₆₀	PAA (Mw 120 -	80.5 wt%	30	400 ppm	1 atm	0.43	0.03	This paper
	180 K)							
		(14.10)						
F1-PAA-C ₆₀	PAA (Mw 120 –	61.3 wt%	30	400 ppm	1 atm	1.20	0.11	This paper
	180 K)							
		(10.74)						
F2-PAA-C ₆₀	PAA (Mw 120 –	57.0 wt%	30	400 ppm	1 atm		0.13	This paper
	180 K)					1.30		
		(9.98)						
48% PEI/SBA-	PEI (M _w 1800)	48 wt%	30	400 ppm	1 atm	1.10	0.10	Silica supported poly(propylene
15								guanidine) as a CO ₂ Sorbent in
		(11.14)						simulated flue gas and direct air

								capture Sang Jae Park,
								Adsorption, 2020
50%	PPG	50 wt%	30	400 ppm	1 atm	0.63	0.04	As above
PPG/SBA-15								
EtSNTs-50	PEI (M _w 600)	(11.2)	30	400 ppm	1 atm	1.05	0.09	Aminopolymer Confined in
PEI								Ethane-Silica Nanotubes for CO ₂
encapsulated								Capture from Ambient Air, Lina
in nanotubes								Liu, ChemNanoMat, 2020
PEI_H-SiO ₂	PEI (M _w 800)	2.62 g PEI/g	30	400 ppm	1 atm	3.36	0.20	Aminopolymer-Impregnated
		sorbent		(19% RH)				Hierarchical Silica Structures:
								Unexpected Equivalent CO ₂
		(16.72)						Uptake under Simulated Air
								Capture and Flue Gas Capture
								Conditions Hyuk Taek Kwon et
								al, ChemMater 2019
PEI_H-SiO ₂	PEI (Mw 800)	2.62 g PEI/g	30	400 ppm	1 atm	2.34	0.14	As above
		sorbent						
		(16.72)						
PEHA-PO-1-	PEHA	59.5 wt%	25	400 ppm	1 atm	1.25	0.12	Oxidation-Resistant Cost-
2/50S		organic						Effective Epoxide-Modified
								Polyamine Adsorbents for CO ₂
		(10.24						Capture from Various Sources
		mmolN/g)						Including Air 2019
TEPA-PO-1-	TEPA	61.0 wt%	25	400 ppm	1 atm	1.34	0.13	As above
2/50S		organic						

		(9.99)						
PEI-CA-SiO ₂	PEI (M _w 800 Da)	0.7 g PEI/gSiO2 (9.52)	35	380 ppm	1 atm	0.36	0.04	Direct CO ₂ Capture from Air using Poly(ethylenimine)- Loaded Polymer/Silica Fiber Sorbents 2019
40% TPTA/SBA-15	ТРТА	41 wt% organic (8.71)	35	400 ppm	1 atm	1.86	0.21	Design of Aminopolymer Structure to Enhance Performance and Stability of CO ₂ Sorbents: Poly(propylenimine) vs Poly(ethylenimine) Simon H. Pang, JACS, 2017
SBA- 15/PEI/PEG20 0	PEI (M _w 800)	(8.38)	30	400 ppm	1 atm	1.64	0.20	Role of Additives in Composite PEI/Oxide CO2 Adsorbents: Enhancement in the Amine Efficiency of Supported PEI by PEG in CO ₂ Capture from Simulated Ambient Air Miles A. Sakwa-Novak, ACS Appl. Mater. Interfaces, 2015
Templated Alumina/PEI/P EG200	PEI (M _w 800)	(5.98)	30	400 ppm	1 atm	1.29	0.22	As above

PEI/PIM-1	PEI (M _w 800)	21 wt %	35	100%	0.0004 bar	0.23	0.05	PIM-1 as a Solution-Processable
composite								"Molecular Basket" for CO ₂
		(4.88)						Capture from Dilute Sources
								Simon H. Pang, ACS Macro
								Letters, 2015
HP20/PEI-50	PEI	50 wt %	25	400 ppm	1 atm	2.26	0.19	Polyethylenimine-Impregnated
								Resin for High CO2 Adsorption:
		(11.61						An Efficient Adsorbent for CO ₂
		mmol/g)						Capture from Simulated Flue
								Gas and Ambient Air Zhenhe
								Chen,† Applied Materials and
								Interfaces, 2013
FS-PEI-50	PEI (M _w 25,000)	50 wt %	25	410 - 420	10.3 bar	1.65 – 1.71	0.15	Carbon Dioxide Capture from
				ppm				the Air Using a Polyamine
		(11.61)						Based Regenerable Solid
								Adsorbent
								Alain Goeppert, JACS 2011
FS-PEI-50	PEI (M _w 25,000)	50 wt %	25	410 - 420	10.3 bar	1.41	0.12	As above
				ppm				
		(11.61)		(RH 67%)				
FS-PEI-33	PEI (M _w 25,000)	33 wt %	25	410 - 420	10.3 bar	1.74	0.23	As above
				ppm			l	
		(7.66)		(RH 67%)				

AEAPDMS-	AEAPDMS-NFC	(4.9)	25	506 ppm	1 atm	1.39	0.28	Amine-Based Nanofibrillated
NFC-FD				(40% RH)				Cellulose As Adsorbent for CO ₂
								Capture from Air. Gebald,
								C.Environ. Sci. Technol. 2011
SynA50	PEI (M _w 800)	(11.20)	25	400 ppm	1 atm	1.74	0.16	Mesoporous Alumina-Supported
								Amines as Potential Steam-
								Stable Adsorbents for Capturing
								CO ₂ from Simulated Flue Gas
								and Ambient Air. Watcharop
								Chaikittisilp, Energy and Fuels
								2011
SynA40	PEI (M _w 800)	(8.66)	25	400 ppm	1 atm	1.33	0.15	As above
MS40	PEI (Mw 800)	(9.23)	25	400 ppm	1 atm	1.05	0.11	As above
PEI/Silica	PEI (M _w 800)	(10.5)	25	400 ppm	1 atm	2.36	0.22	Amine-Tethered Solid
								Adsorbents Coupling High
								Adsorption Capacity and
								Regenerability for CO ₂ Capture
								From Ambient Air, Choi et al.
								2011
A-PEI/Silica	PEI (M _w 800), APTES	(10.7)	25	400 ppm	1 atm	2.26	0.21	As above

T-PEI/Silica	PEI (M _w 800),	(10.5)	25	400 ppm	1 atm	2.19	0.21	As above
	tetrapropyl							
	orthotitanate							
PAA_MCM_4	PAA (M _n 1130	(7.24)	25	400 ppm	1 atm	0.86	0.12	Poly(allylamine)Mesoporous
1	Da)							Silica Composite Materials for
								CO ₂
								Capture from Simulated Flue
								Gas or Ambient Air Watcharop
								Chaikittisilp 2011

Figure S10. Positron lifetime spectra of (a) PAA-C₆₀ and (b) F1-PAA-C₆₀ with fitting lines corresponding to components 1) indium reference, 2) localised molecular defects, and 3) free volume present in the materials. Fitting lines of source contributions have not been included for ease of representation.

Table S3. The values of the three lifetime components and their respective intensities for PAA-C₆₀ and F1-PAA-C₆₀. The shortest lifetime was fixed at 194 ps at a lifetime for Indium,⁵ which was used a reference material in our experimental geometry. The source correction was assumed at 15%, with contributions from 372 ps at 98% in NaCl salt and at 2000 ps (2 ns) with 2 % from epoxy sealing of the source.

Sample	<i>τ</i> ₁ [ps]	<i>I</i> ₁ [%]	τ ₂ [ps]	<i>I</i> ₂ [%]	τ ₃ [ps]	I3 [%]
PAA-C ₆₀	194 fixed	49.57(0.61)	389.9(2.0)	47.9(0.26)	1710(36)	5.02(0.30)
F1-PAA-C ₆₀	194 fixed	50.1(0.5)	386.3(2.8)	49.04(0.49)	2100(170)	1.76(1.2)

In a PALS experiment, a positron is injected into the material to thermalize within a few picoseconds. The positron diffuses into the material where it either self-annihilates or forms a metastable bound state with an electron called positronium (Ps) with a dimension of about 1.06 Å.⁶ There are two states of Ps derived from different combinations of positron and electron: the para-Ps (p-Ps) with anti-parallel spin ($\uparrow\downarrow$) with the probability 1/4, and the ortho-Ps (o-Ps) with parallel spin combination ($\uparrow\uparrow$), with the probability 3/4.⁷ .Due to the spin rules, the intrinsic p-Ps lifetime is over a thousand times shorter than the o-Ps lifetime. The intrinsic lifetime of p-Ps is 125 ps. o-Ps annihilates intrinsically with a lifetime of 142 ns, in a vacuum in the absence of electrons. If a positron is injected in a physical material, it interacts with electrons and the environment, behaving as a quantum particle with characteristic de-Broglie wavelength. In areas of free volume with low electron density, a positron is preferentially

trapped creating an o-Ps that subsequently annihilates with an electron of opposite spin present in the surrounding material. This phenomenon is called "pick-off annihilation" and while it reduces the annihilation lifetime of o-Ps,⁸ it gives information about the size of free volume and its frequency via its pick-off lifetime and intensity. It is thus anticipated that o-Ps lifetime reveals information on the size of the free volume elements where it is confined. The larger the free volume holes, the longer are the positron lifetimes, and vice versa. Due to its substantially smaller size in comparison with physical molecules, like nitrogen (3.64 Å), typically employed in physisorption studies, Ps are used to probe "closed pores" that molecular and atomic size gas molecules cannot access. In the present study, N₂ porosimetry was inadequate to provide information on the free volume present in the materials. Plain and alkylfluorinated cross-linked PAA sorbents contain really small "nano-spaces", which could not be assessed by N₂ molecules. As a result, we did not observe measurable N₂ adsorption in these materials.

References

- 1. S. S. York, S. E. Boesch, R. A. Wheeler and R. Frech, Macromolecules, 2003, 36, 7348-7351.
- 2. S. Lakard, G. Herlem, B. Lakard and B. Fahys, Journal of Molecular Structure: THEOCHEM, 2004, 685, 83-87.
- 3. G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, Wiley, 2004.
- 4. J. M. El Khoury, D. Caruntu, C. J. O' Connor, K.-U. Jeong, S. Z. D. Cheng and J. Hu, J. Nanopart. Res., 2007, 9, 959-964.
- J. del Río, F. Plazaola, N. de Diego and P. Moser, Solid State Commun., 1994, 89, 913-915.
- 6. P. Hautojärvi and A. Vehanen, in Positrons in Solids, ed. P. Hautojärvi, Springer Berlin Heidelberg, Berlin, Heidelberg, 1979, DOI: 10.1007/978-3-642-81316-0_1, pp. 1-23.
- 7. Y. C. Jean, P. E. Mallon and D. M. Schrader, Principles and Applications of Positron and Positronium Chemistry, 2003.
- 8. D. M. Schrader and Y. C. Jean, Positron and positronium chemistry, Elsevier, Amsterdam [The Netherlands]; New York, 1988.