Supporting Information

Enhanced performance of all-organic sandwich structured

dielectrics with linear dielectric and ferroelectric polymer

Chao Wang^a, Guanghu He^a, Sheng Chen^{*a}, Hang Luo^{*b} and Dou Zhang^b

^{a.} Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China. E-mail: chensheng0729@xtu.edu.cn

^{b.} State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, China

Characterization

The morphology of raw sepiolite nanofibers, modified sepiolite nanofibers and nanocomposites were characterized by scanning electron microscopy (SEM, JSM-6390). Differential scanning calorimetry (DSC) traces of the nanocomposites were obtained using a TA Q10 DSC instrument at a heating rates of 10 °C/min during the

rst heating process. 1D WAXD experiments were performed on a BRUKER AXS D8 advance diffractometer with a 40 kV FL tubes as the X-ray source (Cu Ka) and a LYNXEYE_XE detector. Gold electrodes with a thickness of 100 nm and a diameter of 2 mm were sputtered on two sides of films. The dielectric performance was measured using an Agilent 4294A LCR meter with a frequency range from 1 kHz to 10 MHz at room temperature. The polarization-electric field hysteresis loops of the composites were performed at 10 Hz by a TF analyzer 2000 ferroelectric polarization tester (aixACT, Germany). The energy storage performance was calculated according to the P-E loops (The test voltage range is 0-10kV, the temperature range is 25-125°C).

Figure S1 The Cross section SEM image of the (a) 4 vol%, (b) 5 vol% and (c) 6 vol% PVTC/PEI blending films

Figure S2. Weibull distribution of reverse-sandwich structured polymer films with different PVTC volume fractions.

Figure S3.The D-E loops of (a) positive-sandwich structured film P-15-P and (b) reversesandwich structured film 7.5-P-7.5 under different temperatures

Table S1. The local electric fields in various layers of pos	ositive-sandwich structured films at different electric fields
--	--

Sample	200MV/m		300MV/m		400MV/m		500MV/m	
	PEI	PVTC	PEI	PVTC	PEI	PVTC	PEI	PVTC
P-5-P	208	36	313	54	417	72	521	90
P-10-P	218	38	327	57	436	76	545	95
P-15-P	228	40	342	59	455	79	569	99
P-25-P	255	44	383	66	510	88	638	111
P-40-P	301	52	451	78	601	104	751	130
P-60-P	404	70	606	105	808	140	1010	175
P-80-P	598	104	897	155	1195	207	1494	259

Table S2. The local electric fields in various layers of reverse-sandwich structured films at different electric fields

Sample	200MV/m		300MV/m		400MV/m		500MV/m	
	PEI	PVTC	PEI	PVTC	PEI	PVTC	PEI	PVTC
5-P-5	218	38	327	57	436	76	545	95
7.5-P-7.5	228	40	343	59	456	79	571	99
12.5-P-12.5	252	44	378	66	504	87	630	109
17.5-P-17.5	281	49	422	73	563	98	704	121
25-P-25	341	59	511	89	682	118	852	148
37.5-P-37.5	526	91	790	137	1053	182	1316	228