Supplementary Information

Design of Monolithic Closed-Cell Polymer Foams via Controlled Gas-Foaming for High-Performance Solar-Driven Interfacial Evaporation

Lifang Qiao, Na Li, Lin Luo, Jintao He, Yuxuan Lin, Jingjing Li, Liangmin Yu, Cui Guo,* Petri Murto* & Xiaofeng Xu*

* Corresponding authors: X. Xu, email: xuxiaofeng@ouc.edu.cn

P. Murto, email: pm707@cam.ac.uk

C. Guo, email: guocui@ouc.edu.cn

Table of Contents

1. Materials	S3
2. Materials characterization	S3
3. SEM images	S4
4. Diameter distribution	S4
5. EDS mapping	S5
6. Atomic percentage of elements	S5
7. FTIR spectra	S5
8. Water contact angle measurements	S6
9. Tensile testing	S7
10. Morphology of 3D composite foams	S7
11. Density of dry 3D foams	S8
12. Compressive testing of 3D foams	S8
13. Artificial optical setup of evaporation measurements	S9
14. Summary of water evaperation rates	S9
15 Morphology of 3D composite hydrogels	S11
15. Wolphology of 5D composite nyurogers	
16. Water diffusion	
16. Water diffusion	
 16. Water diffusion	
 16. Water diffusion	

1. Materials

PAN ($M_w = 150.0 \text{ kDa}$) was purchased from Hefei Sipin Technology Co., Ltd, China. BPA prepolymer was purchased from Aladdin Chemical Co., Ltd., China. NaBH₄, DMF and methanol were purchased from Sinopharm Chemical Reagent Co., Ltd, China.

2. Materials characterization

The morphologies and elemental mapping were characterized by a scanning electron microscope (VEGA3, TESCAN) in combination with energy dispersive X-ray spectrometry. 3D optical microscope images were characterized via a 3D laser scanning confocal microscope (VK-X260K, Keyence). Contact angles were measured via a contact angle goniometer (JC2000DM, Powereach) by using 4 µL of water droplet as an indicator. The FTIR spectra were recorded via a Nicolet FTIR infrared microscope (iS50 FT-IR, Thermo Fisher Scientific). The density of all samples was measured and calculated by a high-precision foam density tester (AU-120PF, Quarrz, accuracy: 0.1 mg cm^{-3}). The tensile and compressive tests were performed using a universal mechanical testing system equipped a 100 N digital force gauges (M5-100, Mark-10, accuracy: 0.02 N) and a force test stand (ESM 303, Mark-10). The reflectance spectra were measured via a UV-Vis-NIR spectrometer (Lambda 950, PerkinElmer) equipped with an integrating sphere. The absorptance at each wavelength is defined by 1 - T - R, where T and R are the corresponding transmittance and reflectance, respectively. Thermal conductivity was measured by a homemade thermal conductivity testing system. Specific surface areas were measured by N2 adsorption at 77 K (Tristar II 3020, Norcross) and calculated by using Brunauer-Emmett-Teller (BET) equation. Biofouling characterization of the foams was performed via a CytoFLEX flow cytometer (A00-1-1102, Beckman Coulter), and the data collection and analysis were conducted by using CytExpert software. Biofouling characterization of the films was performed via a confocal laser scanning microscopy (Nikon A1, Japan). ImageJ software was used to analyze the CLSM images.

3. SEM images

Figure S1. SEM images of 2D nanofibrous membranes with different loading of PAN and BPA epoxy resins.

4. Diameter distribution

Figure S2. Diameter distribution and mean diameter of 2D nanofibrous membranes with different loading of PAN and BPA epoxy resins.

5. EDS mapping

Figure S3. EDS mapping of carbon (C) of 2D nanofibrous membranes with different loading of PAN and BPA epoxy resins.

6. Atomic percentage of elements

Table S1. Atomic percentage of C, N and O in 2D nanofibrous membranes with different loading of PAN and BPA epoxy resins.

element	C (%)	N (%)	O (%)
1:0.5	46.9	30.0	23.1
1:0.75	51.8	27.6	20.6
1:1	49.0	28.5	22.5
1:1.5	47.0	25.4	27.6
1:2	47.3	21.5	31.2

7. FTIR spectra

Figure S4. FTIR spectra of neat PAN and PAN/BPA composite membranes.

8. Water contact angle measurements

Figure S5. (a) Time-lapse snapshots of water droplet absorption through 2D nanofibrous membranes with different loading of PAN and BPA epoxy resins; (b) water contact angles on thin films with different loading of PAN and BPA epoxy resins.

9. Tensile testing

Figure S6. Tensile stress-strain curves of the PAN/BPA (1:1) nanofibrous membranes in dry and wet states.

10. Morphology of 3D composite foams

Figure S7. Digital photographs of a 3D composite foam (PAN:BAP = 1:1) (a) top view and (b) side view. SEM images of a 3D composite foam (PAN:BAP = 1:1) (c) and (d) transverse cross-sections; (e) and (f) longitudinal cross-sections.

Figure S8. (a) Digital photographs of PAN:BPA (1:1) foams that gas-foamed by using different concentrations of NaBH₄ (Sample 1: 0.006 mol/cm²; Sample 2: 0.02 mol/cm²; Sample 3: 0.06 mol/cm² and Sample 4: 0.18 mol/cm²); (b) corresphonding wall thickness of the foams.

11. Density of dry 3D foams

12. Compressive testing of 3D foams

Figure S10. A digital photograph of compressive testing.

13. Artificial optical setup of evaporation measurements

Figure S11. A schematic diagram of the artificial optical setup for water evaporation measurements.

14. Summary of water evaperation rates

Table S2	Summary	of ma	aterials,	water	evaporation	rates	and	device	configuration	of
interficial steam generators using PAN as structural elements.										

materials	evaporation rates (kg $m^{-2} h^{-1}$)	type	references
PAN/Nylon 6/PS/CB	1.24	indirect contact	1
CB/PMMA/PAN	1.30	direct contact	2
CB/PAN/PVDF	1.20	direct contact	3
RGO/cotton/PAN	1.47	direct contact	4
CNT/MoS ₂ /PAN	1.44	direct contact	5
PAN/rGO/PS	1.46	indirect contact	6
PAN/PVA/AuNR	2.70	direct contact	7
Co-Zn ZIF/MoS ₂ /PAN	1.39	direct contact	8
SiO ₂ / MWCNTs-COOH / PAN/PS	1.28	indirect contact	9
PAN/GO	2.27	direct contact	10

material	evaporation rate $(kg m^{-2} h^{-1})$	type	references
Alkalized loofah sponge/carbonized loofah sponge	1.36	indirect contact	11
SnSe–SnSe ₂ /glassy carbon foam	1.28	direct contact	12
Carbonized loofah/hydrophilic loofah	1.42	direct contact	13
Ni ₁ Co ₃ @PDA/commercial sponge/sodium alginate	2.42	indirect contact	14
Konjac Glucomannan/rGO	1.60	direct contact	15
plant-derived carbon Nanospheres/polyvinyl alcohol sponge	1.53	direct contact	16
Carbonized towel-gourd sponges	1.46	indirect contact	17
Sodium alginate/M-PPy sponge	1.48	direct contact	18
Fe ₂ O ₃ /CNT/Ni nanocomposite foam	1.48	direct contact	19
Porous carbon foam (SPCF)	1.48	direct contact	20
Melamine foam	1.476	indirect contact	21
Cu _x S/Cu foam	1.96	indirect contact	22
Cu ₇ S ₄ -MoS ₂ -Au nanoparticles (CMA NPs)/PDMS	3.82	direct contact	23
CNT/CNC/PCC sponge/TE module	1.36	indirect contact	24
Ti foam/cotton/polyurethane sponge	1.79	direct contact	25
Carbon foams (CFs)	1.03	direct contact	26
rGO foam	2.40	direct contact	27
rGO/cotton fabric/ VOPPF	1.47	direct contact	4
GS	1.118	direct contact	28
AMS	1.98	indirect contact	29
PBP/Bi ₂ S ₃ /PU	1.66	direct contact	30
PFS/rGO	1.38	direct contact	31
CS	1.39	direct contact	32
Polyurethane sponge/dopamine hydrochloride	0.83	direct contact	33

Table S3. Summary of materials, water evaporation rates and device configuration of interficial steam generators based on polymric sponges/foams.

15. Morphology of 3D composite hydrogels

Figure S12. Cross-sectional SEM images of the 3D composite hydrogels (PAN:BPA=1:1).

16. Water diffusion

Figure S13. Water diffusion characterization of (a) 3D foam and (b) hydrogel based on PAN/BPA (1:1) composites (all samples have similar height of ~1.5 cm).

17. Thermal conductivity measurements

Figure S14. A schematic diagram of thermal conductivity measurements.

The thermal conductivities of PAN/BPA sponge and hydrogel were measured via an IR imaging method³⁴. The samples with thickness of ~3.5 mm was sandwiched between two 1.1 mm glasses. The sandwich structure was placed between copper plate heated by solar simulator and heat sink. The heat transfer rate (q) permeating the sample can be calculated using the Fourier Equation S1:

$$q = -k_1 \frac{T_2 - T_1}{d_1} = -k \frac{T_3 - T_2}{d_2}$$
(S1)

where k_1 is the thermal conductivity of glass (1.05 W m⁻¹K⁻¹)³⁵. T_1 , T_2 , T_3 are the average temperatures at the interface of copper plate–top glass, top glass–sample, sample–bottom glass, respectively. The thermal conductivities of samples (*k*) can be calculated by Equation S1 based on IR images.

18. Calculation of water evaporation rates and light-to-heat conversion efficiencies

The water evaporation rate can be calculated by Equation S2,³⁶

$$v = \frac{\Delta m}{A \times \Delta t} \tag{S2}$$

where Δm is the mass change of water (kg), A is the surface area of the evaporator (m²), and Δt is the time (h).

19. Heat loss characterization of SG3 and SG4

(i) Radiation loss:

The radiation loss was analyzed by Stefan-Boltzmann Equation S4,

$$\Phi = \varepsilon A \sigma (T_1^4 - T_2^4) \tag{S3}$$

 Φ is heat flux (W), ε denotes emissivity (Supposing the evaporator has a maximum emissivity of 1), A is evaporation surface area (3.70 cm² for SG3, 4.56 cm² for SG4), σ represents the Stefan-Boltzmann constant ($\sigma = 5.670373 \times 10^{-8}$ W m⁻² K⁻⁴), T_1 is the average surface temperature of the solar absorber after stable steam generation under one-sun illumination (316.1 K for SG3, 314.2 K for SG4). T_2 is the ambient temperature around the evaporator (309.7 K). Therefore, based on Equation S3, we can calculate that the radiation heat loss of SG3 is ~3.08%. The radiation heat loss of SG4 is ~1.7%.

(ii) Conduction loss:

The heat loss of convection was analyzed according to the following Equation S5.

$$Q = Cm\Delta T \tag{S4}$$

Q denotes the heat energy, *C* is the specific heat capacity of pure water (4.2 kJ °C⁻¹ kg⁻¹), *m* represents the weight of bulk water and ΔT is the increased temperature of the bulk water after stable steam generation. In our experimental, m = 50 g, $\Delta T = 0.9$ °C for SG3, $\Delta T = 0.4$ °C for SG4. Therefore, based on Equation S4, we can calculate that the conduction heat loss of SG3

is ~14.1%. The conduction heat loss of SG4 is ~5.1%.

(iii) Convection loss:

The convection loss was calculated by Newton's law of cooling.

 $Q = hA\Delta T \tag{S5}$

Q is the heat energy, h denotes the convection heat transfer coefficient (~5 W m⁻²K⁻¹)³⁷. A represents surface area. ΔT is difference between the ambient temperature around the evaporator and the surface temperature of the evaporator. Therefore, based on Equation S5, we can calculate that the convection heat loss of SG3 is ~2.2%. The convection heat loss of SG4 is ~1.25%.

(iv) Reflection loss:

The solar absorption of solar absorber is 94%; thus, the reflection loss is $\sim 6\%$.

Figure S15. Energy balance and heat loss diagrams of (a) SG3 and (b) SG4.

20. Evaporation of SG4 in a wide range of pH

Figure S16. Mass changes of water over 40 min in different pH under one sun.

21. Evaporation of SG4 in different salinity

Figure S17. Mass changes of brine and evaperation rates over time in different salinity under one sun.

22. Evaporation of SG4 in outdoor measurements

Figure S18. (a) Solar azimuth angle and solar elevation angle in real time; (b) Mass change and solar flux of SG4 during outdoor water evaporation measurements.

23. Salinity and TDS measurements

Figure S19. Salinity and TDS measurements for outdoor solar desalination.

24. Specific surface areas

Figure S20. Characterization of BET specific surface areas of the 2D nanofibrous membranes based on neat PAN and PAN:BPA (1:1).

25. Durability tests of 3D foams

Figure S21. Digital photographs of neat PAN and PAN:BPA (1:1) foams before and after two weeks' soaking in natrual water.

Figure S22. Didital photographs of a large-area PAN:BPA (1:1) foam before and after three months' soaking in natural water; (b) corresphonding mass change of water during solar evaperation.

Figure S23. Digital photographs of PAN:BPA (1:1) foams after soaking in warm, acidic and alkaline water.

26. References

- 1. Y. Jin, J. Chang, Y. Shi, L. Shi, S. Hong and P. Wang, *J. Mater. Chem. A*, 2018, **6**, 7942-7949.
- W. Xu, X. Hu, S. Zhuang, Y. Wang, X. Li, L. Zhou, S. Zhu and J. Zhu, *Adv. Energy Mater.*, 2018, 8, 1702884.
- 3. T. Gao, Y. Li, C. Chen, Z. Yang, Y. Kuang, C. Jia, J. Song, E. M. Hitz, B. Liu, H. Huang, J. Yu, B. Yang and L. Hu, *Small Methods*, 2019, **3**, 1800176.
- 4. Q. Zhang, H. Yang, X. Xiao, H. Wang, L. Yan, Z. Shi, Y. Chen, W. Xu and X. Wang, J. *Mater. Chem. A*, 2019, **7**, 14620-14628.
- 5. B. Zhu, H. Kou, Z. Liu, Z. Wang, D. Macharia, M. Zhu, B. Wu, X. Liu and Z. Chen, ACS Appl. Mater. Interfaces, 2019, **11**, 35005-35014.
- 6. X. Fan, B. Lv, Y. Xu, H. Huang, Y. Yang, Y. Wang, J. Xiao and C. Song, *Solar Energy*, 2020, **209**, 325-333.
- 7. Z. Huang, S. Li, X. Cui, Y. Wan, Y. Xiao, S. Tian, H. Wang, X. Li, Q. Zhao and C. Lee, *J. Mater. Chem. A*, 2020, **8**, 10742-10746.
- H. Peng, L. Zhang, M. Li, M. Liu, C. Wang, D. Wang and S. Fu, *Chem. Eng. J.*, 2020, 397, 125410.
- 9. Q. Qi, W. Wang, Y. Wang and D. Yu, Sep. Purif. Technol., 2020, 239, 116595.
- 10. L. Wang, C. Liu, H. Wang, Y. Xu, S. Ma, Y. Zhuang, W. Xu, W. Cui and H. Yang, *ACS Appl. Mater. Interfaces*, 2020, **12**, 24328-24338.
- 11. Y. Lu, X. Wang, D. Q. Fan, H. Yang, H. L. Xu, H. H. Min and X. F. Yang, *Sustain. Mater. Technol.*, 2020, **25**, e00180.
- 12. Z. Tahir, S. Kim, F. Ullah, S. Lee, J. Lee, N. Park, M. Seong, S. Lee, T. Ju, S. Park, J. Bae, J. Jang and Y. Kim, *ACS Appl. Mater. Interfaces*, 2020, **12**, 2490-2496.
- 13. C. Liu, K. V. Hong, X. Sun, A. Natan, P. C. Luan, Y. Yang and H. L. Zhu, *J. Mater. Chem. A*, 2020, **8**, 12323-12333.
- 14. B. Shao, Y. D. Wang, X. Wu, Y. Lu, X. F. Yang, G. Y. Chen, G. Owens and H. L. Xu, *J. Mater. Chem. A*, 2020, **8**, 11665-11673.
- 15. K. Yu, P. Shao, P. Meng, T. Chen, J. Lei, X. F. Yu, R. He, F. Yang, W. K. Zhu and T. Duan, *J. Hazard. Mater.*, 2020, **392**, 122350.
- 16. H. M. Wilson, Tushar, S. R. Ar and N. Jha, *Sol. Energy Mater. Sol. Cells*, 2020, **210**, 110489.

- 17. X. L. Shan, A. Q. Zhao, Y. W. Lin, Y. J. Hu, Y. S. Di, C. H. Liu and Z. X. Gan, *Adv. Sustainable Syst.*, 2020, **4**, 1900153.
- Y. K. Fan, W. Bai, P. Mu, Y. N. Su, Z. Q. Zhu, H. X. Sun, W. D. Liang and A. Li, *Sol. Energy Mater. Sol. Cells*, 2020, 206, 110347.
- 19. S. Han, J. Yang, X. Li, W. Li, X. Zhang, N. Koratkar and Z. Yu, *ACS Appl. Mater. Interfaces*, 2020, **12**, 13229-13238.
- C. Wang, J. Wang, Z. Li, K. Xu, T. Lei and W. Wang, J. Mater. Chem. A, 2020, 8, 9528-9535.
- 21. S. Meng, X. Zhao, C. Tang, P. Yu, R. Bao, Z. Liu, M. Yang and W. Yang, *J. Mater. Chem. A*, 2020, **8**, 2701-2711.
- 22. W. Huang, P. Su, Y. Cao, C. Li, D. Chen, X. Tian, Y. Su, B. Qiao, J. Tu and X. Wang, *Nano Energy*, 2020, **69**, 104465.
- 23. H. Wang, R. Zhang, D. Yuan, S. Xu and L. Wang, Adv. Funct. Mater., 2020, 30, 2003995.
- 24. L. Zhu, T. Ding, M. Gao, C. K. Peh and G. W. Ho, Adv. Energy Mater., 2019, 9, 1900250.
- 25. K. Yin, S. Yang, J. R. Wu, Y. J. Li, D. K. Chu, J. He and J. A. Duan, *J. Mater. Chem. A*, 2019, **7**, 8361-8367.
- 26. P. Qiu, F. Liu, C. Xu, H. Chen, F. Jiang, Y. Li and Z. Guo, *J. Mater. Chem. A*, 2019, 7, 13036-13042.
- H. Liang, Q. Liao, N. Chen, Y. Liang, G. Lv, P. Zhang, B. Lu and L. Qu, *Angew. Chem. Int. Ed.*, 2019, 58, 19041-19046.
- 28. Z. Zhang, P. Mu, J. He, Z. Zhu, H. Sun, H. Wei, W. Liang and A. Li, *Chemsuschem*, 2019, **12**, 426-433.
- 29. F. Gong, H. Li, W. B. Wang, J. G. Huang, D. W. Xia, J. X. Liao, M. Q. Wu and D. V. Papavassiliou, *Nano Energy*, 2019, **58**, 322-330.
- H. Y. Cheng, X. H. Liu, L. X. Zhang, B. F. Hou, F. Yu, Z. X. Shi and X. B. Wang, *Solar Energy Mater. Solar Cells*, 2019, 203, 110127.
- T. J. Chen, S. Wang, Z. Z. Wu, X. D. Wang, J. Peng, B. H. Wu, J. Q. Cui, X. L. Fang, Y. Q. Xiec and N. F. Zheng, *J. Mater. Chem. A*, 2018, 6, 14571-14576.
- 32. L. Zhu, M. Gao, C. N. Peh, X. Wang and G. Ho, Adv. Energy Mater., 2018, 8, 1702149.
- S. Ma, C. Chiu, Y. Zhu, C. Tang, H. Long, W. Qarony, X. Zhao, X. Zhang, W. Lo and Y. Tsang, *Appl. Energy*, 2017, 206, 63-69.
- 34. H. Li, Y. He, Y. Hu and X. Wang, ACS Appl. Mater. Interfaces, 2018, 10, 9362-9368.
- 35. J. Wan, A. Fan, H. Yao and W. Liu, Energ. Convers. and Manage., 2015, 96, 605-612.
- 36. X. Q. Li, G. Ni, T. Cooper, N. Xu, J. L. Li, L. Zhou, X. Z. Hu, B. Zhu, P. C. Yao and J. Zhu, *Joule*, 2019, **3**, 1798-1803.
- 37. H. Ghasemi, G. Ni, A. M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic and G. Chen, *Nat. Commun.*, 2014, **5**, 4449.