Electronic Supplementary Material (ESI)

Understanding Trends in Activity and Selectivity of Bi-atom

Catalysts for Electrochemical Reduction of Carbon Dioxide

Fuhua Li and Qing Tang*

School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of

Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331,

China

*To whom correspondence should be addressed. E-mail: qingtang@cqu.edu.cn.

Table	S1.	The	distances	between	the	central	metal	atoms	$(d_{\text{M-M}})$	in	homo-nuclear	BACs	and	the

Species	Bulk	BACs
Ag	2.89	2.77
Al	2.86	2.59
Au	2.88	2.70
Ca	3.95	3.08
Со	2.50	2.25
Cr	2.50	2.28
Cu	2.56	2.62
Fe	2.48	2.22
Hf	3.13	2.98
Ir	2.72	2.38
Mg	3.20	2.63
Мо	2.73	2.38
Nb	2.86	2.54
Ni	2.49	2.57
Os	2.68	2.35
Pd	2.75	2.63
Pt	2.78	2.69
Re	2.74	2.35
Rh	2.69	2.36

distance between two adjacent atoms in bulk metal (b_{M-M}), unit in angstrom (Å).

Ru	2.65	2.33
Sc	3.25	2.95
Sn	2.81	3.40
Sr	4.30	3.27
Та	2.86	2.59
Ti	2.89	2.61
W	2.74	2.41
Y	3.56	3.26
Zn	2.67	2.57
Zr	3.18	2.96
Mn	2.28	2.27
Ga	2.53	2.67
Bi	3.10	3.45

Table S2. The number of electrons (n_e) involved in the dissolution for the pure metals, standard dissolution potentials $(U_{diss(metal)}^0, pH = 0)$, energy of central metal atom (E_M) , the formation energy, E_f , and computed dissolution potentials (U_{diss}) for SACs. Some of them refers from the publication of Guo et al.¹

Species	<i>n</i> _e	$U_{ m diss(metal)}^0$ (V)	$E_{\rm M}({\rm eV})$	$E_{\rm f}({\rm eV})$	$U_{\rm diss}\left({ m V} ight)$
Ag	1	0.80	-2.83	-0.23	1.03
Al	3	-1.66	-3.75	-5.04	0.02
Au	3	1.50	-3.90	-0.09	1.53
Bi	1	0.50	-3.90	-1.58	2.08
Ca	2	-2.89	-1.96	-4.36	-0.71
Со	2	-0.28	-7.11	-3.39	1.41
Cr	2	-0.91	-9.64	-3.67	0.92
Cu	2	0.34	-4.10	-1.69	1.19
Fe	2	-0.45	-8.46	-3.50	1.30

Ga	3	-0.55	-3.04	-2.58	0.31
Hf	4	-1.55	-9.95	-4.20	-0.50
Ir	3	1.16	-8.86	-2.38	1.95
Mg	2	-2.37	-0.55	-4.78	0.02
Mn	2	-1.19	-9.16	-3.96	0.79
Мо	3	-0.20	-10.86	-2.41	0.60
Nb	3	-1.10	-10.11	-3.27	-0.01
Ni	2	-0.26	-5.78	-2.95	1.22
Os	8	0.84	-11.22	-2.20	1.11
Pd	2	0.95	-5.18	-2.06	1.98
Pt	2	1.18	-6.06	-2.11	2.24
Re	3	0.30	-12.44	-2.15	1.02
Rh	2	0.60	-7.36	-2.76	1.98
Ru	2	0.46	-9.28	-2.65	1.78
Sc	3	-2.08	-6.34	-5.31	-0.31
Sn	2	-0.14	-4.01	-2.12	0.92
Sr	2	-2.90	-1.69	-8.62	1.41
Та	3	-0.60	-11.86	-2.88	0.36
Ti	2	-1.63	-7.90	-4.32	0.53
V	2	-1.18	-9.09	-3.73	0.68
W	3	0.10	-12.96	-2.44	0.91
Y	3	-2.37	-6.47	-7.33	0.07

Zn	2	-0.76	-1.27	-2.16	0.32
Zr	4	-1.45	-8.55	-3.90	-0.48

Table S3. The detailed electronic energy (E_*) and binding energy (E) of critical intermediates (*CO₂,

*СООН,	*CO, a	and *HC	OO) in ho	monuclear	BACs	during	electrochemical	$CO_2RR.$

Species	E*	$E_{*{\rm CO}_2}$	$E_{\rm CO_2}$	E*COOH	E _{COOH}	E*co	$E_{\rm CO}$	E*HCOO	E _{HCOO}
Bi-Bi	-513.98	-537.05	-0.11	-539.23	0.90	-528.85	0.21	-539.89	-0.21
Co-Co	-524.01	-547.09	-0.12	-549.87	0.30	-538.89	0.19	-549.55	0.46
Cr-Cr	-529.64	-552.73	-0.13	-556.79	-1.00	-545.98	-1.27	-556.83	-1.72
Cu-Cu	-514.60	-537.78	-0.22	-539.71	1.04	-529.48	0.20	-540.04	0.51
Fe-Fe	-526.94	-550.02	-0.13	-553.23	-0.13	-542.46	-0.45	-552.87	-0.21
Ga-Ga	-514.30	-537.41	-0.15	-541.04	-0.59	-529.31	0.07	-541.70	-1.64
Ir-Ir	-525.50	-548.62	-0.16	-551.46	0.19	-540.21	0.36	-550.72	1.01
MnMn	-529.26	-552.33	-0.11	-555.94	-0.53	-545.38	-1.05	-555.84	-0.72
МоМо	-529.56	-552.61	-0.10	-556.66	-0.95	-546.11	-1.48	-557.36	-2.63
Ni-Ni	-520.48	-543.57	-0.13	-545.81	0.83	-535.36	0.20	-545.75	0.93
Os-Os	-529.85	-552.96	-0.16	-556.77	-0.77	-545.98	-1.05	-556.13	1.01
Pd-Pd	-517.50	-540.81	-0.36	-543.22	0.43	-532.57	0.00	-542.61	0.91
Pt-Pt	-519.36	-542.70	-0.39	-545.30	0.22	-534.46	-0.03	-544.40	1.04
Re-Re	-532.17	-555.26	-0.12	-559.01	-0.68	-548.92	-1.67	-559.27	-0.31
Rh-Rh	-523.25	-546.35	-0.14	-548.84	0.56	-538.13	0.20	-548.52	1.03
Ru-Ru	-526.87	-549.98	-0.15	-553.65	-0.62	-542.78	-0.83	-553.15	0.09

Sn-Sn	-515.29	-538.35	-0.11	-541.39	0.05	-530.13	0.23	-541.78	-0.14
Sr-Sr	-524.23	-547.51	-0.33	-549.92	0.46	-539.27	0.03	-551.25	-1.40
Ta-Ta	-532.50	-557.13	-1.67	-560.22	-1.57	-549.02	-1.44	-561.58	-4.06
Ti-Ti	-527.46	-551.27	-0.85	-554.67	-1.05	-543.47	-0.93	-556.11	-3.57
V-V	-528.66	-551.85	-0.24	-555.55	-0.74	-544.83	-1.10	-556.80	-3.19
W-W	-533.81	-556.88	-0.12	-560.49	-0.52	-549.76	-0.88	-561.27	-2.14
Zn-Zn	-509.88	-532.96	-0.12	-535.59	0.44	-524.73	0.22	-536.06	-0.40
Ag-Ag	-509.14								
Al-Al	-520.60								
Au-Au	-511.00								
Ca-Ga	-515.65								
Hf-Hf	-531.33								
MgMg	-513.68								
Nb-Nb	-529.77								
Sc-Sc	-526.32								
Y-Y	-530.61								
Zr-Zr	-527.91								

Table S4. The detailed electronic energy (E_*) and binding energy (E) of critical intermediates (*CO₂, *COOH, *CO, *H, and *HCOO) in Mo-based heteronuclear BACs during electrochemical CO₂RR.

Species	Mo-Fe	Мо-Со	Mo-Ir	Mo-Rh	Mo-Ni	Mo-Cu	Mo-Zn	Mo-Ga
E*	-528.60	-527.34	-528.41	-527.17	-525.25	-522.24	-520.01	-521.30

E_{*CO2}	-552.32	-550.52	-551.50	-550.26	-548.32	-545.31	-543.23	-545.26
$E_{\rm CO_2}$	-0.76	-0.23	-0.13	-0.13	-0.11	-0.11	-0.26	-1.00
E*COOH	-555.45	-553.26	-554.37	-552.72	-550.65	-548.15	-546.62	-548.11
E _{COOH}	-0.70	0.23	0.20	0.60	0.76	0.25	-0.46	-0.65
E*co	-545.16	-543.94	-544.98	-543.74	-541.96	-538.95	-536.67	-537.90
$E_{\rm CO}$	-1.48	-1.53	-1.50	-1.50	-1.63	-1.63	-1.59	-1.51
$E_{*\mathrm{H}}$	-532.59	-531.49	-532.54	-531.31	-529.44	-526.42	-524.13	-525.35
$E_{ m H}$	-0.54	-0.71	-0.69	-0.69	-0.74	-0.73	-0.68	-0.59
E*HCOO	-556.41	-555.16	-556.17	-554.97	-553.09	-550.05	-548.07	-549.63
E _{HCOO}	-1.65	-1.67	-1.61	-1.64	-1.68	-1.65	-1.91	-2.17

Table S5. The detailed electronic energy (E_*) and binding energy (E) of critical intermediates (*CO₂,

*COOH, *CO, *H, and *HCOO	in Ta-based heteronuclear BACs	during electrochemical	CO_2RR
---------------------------	--------------------------------	------------------------	----------

Species	Ta-Fe	Та-Со	Ta-Ir	Ta-Rh	Ta-Ni	Ta-Cu	Ta-Zn	Ta-Ga
E*	-530.26	-529.04	-530.08	-528.89	-527.40	-524.33	-522.05	-523.37
E_{*CO2}	-555.00	-553.49	-554.35	-553.14	-551.98	-548.93	-546.63	-548.28
$E_{\rm CO_2}$	-1.79	-1.50	-1.31	-1.30	-1.63	-1.64	-1.62	-1.95
E*COOH	-558.23	-556.09	-556.93	-555.51	-553.46	-551.29	-549.28	-550.89
E _{COOH}	-1.82	-0.89	-0.69	-0.47	0.29	-0.81	-1.07	-1.36
E*co	-546.77	-545.69	-546.80	-545.56	-543.91	-540.90	-538.64	-539.96
$E_{\rm CO}$	-1.44	-1.57	-1.64	-1.59	-1.43	-1.49	-1.51	-1.51
$E_{*\mathrm{H}}$	-534.89	-533.68	-534.66	-533.44	-532.06	-528.98	-526.66	-527.93

$E_{ m H}$	-1.19	-1.19	-1.12	-1.10	-1.22	-1.20	-1.16	-1.11
$E_{\rm *HCOO}$	-559.22	-558.05	-559.02	-557.82	-556.39	-553.29	-550.93	-552.51
$E_{\rm HCOO}$	-2.81	-2.86	-2.78	-2.77	-2.84	-2.80	-2.73	-2.99

Table S6. The detailed electronic energy (E_*) and binding energy (E) of critical intermediates (*CO₂,

*COOH, *CO, *H, and *HCOO) in V-based heteronuclear BACs during electrochemical CO₂RR.

Species	V-Fe	V-Co	V-Ir	V-Rh	V-Ni	V-Cu	V-Zn	V-Ga
E_*	-528.40	-527.11	-528.09	-526.82	-525.46	-522.25	-519.85	-521.41
E_{*CO2}	-552.25	-550.86	-551.78	-550.48	-548.54	-545.31	-542.94	-545.31
$E_{\rm CO_2}$	-0.89	-0.79	-0.73	-0.70	-0.12	0.10	-0.13	-0.94
E*COOH	-555.76	-553.71	-554.64	-553.21	-551.20	-548.14	-546.57	-548.51
E _{COOH}	-1.21	-0.45	-0.39	-0.23	0.61	0.47	-0.56	-0.94
E_{*CO}	-544.52	-543.47	-544.46	-543.16	-541.62	-538.45	-536.07	-537.60
$E_{\rm CO}$	-1.05	-1.28	-1.29	-1.26	-1.08	-1.12	-1.14	-1.11
$E_{\rm *H}$	-532.00	-530.78	-531.70	-530.43	-529.17	-525.94	-523.52	-525.08
E_{H}	-0.15	-0.22	-0.17	-0.16	-0.26	-0.24	-0.22	-0.22
$E_{*\text{HCOO}}$	-556.45	-554.82	-555.78	-554.54	-553.24	-550.06	-548.03	-550.04
$E_{\rm HCOO}$	-1.89	-1.56	-1.53	-1.56	-1.63	-1.65	-2.03	-2.48

Table S7. The detailed electronic energy (E_*) and binding energy (E) of critical intermediates (*CO₂, *COOH, *CO, *H, and *HCOO) in Ti-based heteronuclear BACs during electrochemical CO₂RR.

Spacias	Ti Ea	Ti Ca	T; Ir	T; Dh	T; N;	Ti Cu	T; 7n	Ti Ca
species	11-110	11-00	11-11	11-111	11-111	II-Cu	11-211	11-0a

E*	-527.65	-526.44	-527.47	-526.20	-524.82	-521.65	-519.31	-520.88
E_{*CO2}	-551.90	-550.64	-551.55	-550.25	-548.30	-545.17	-542.83	-545.19
$E_{\rm CO_2}$	-1.30	-1.25	-1.12	-1.09	-0.52	-0.57	-0.56	-1.35
E*COOH	-555.39	-553.70	-554.67	-553.22	-551.01	-548.03	-546.29	-548.53
E _{COOH}	-1.59	-1.11	-1.04	-0.86	0.17	-0.23	-0.83	-1.50
E_{*CO}	-543.54	-542.36	-543.35	-542.09	-540.83	-537.65	-535.32	-537.04
$E_{\rm CO}$	-0.82	-0.85	-0.80	-0.81	-0.93	-0.93	-0.94	-1.09
$E_{*\mathrm{H}}$	-531.15	-529.99	-530.94	-529.61	-528.56	-525.37	-523.02	-524.91
E_{H}	-0.06	-0.10	-0.02	0.04	-0.29	-0.27	-0.27	-0.59
$E_{*\text{HCOO}}$	-555.74	-554.57	-555.56	-554.34	-553.15	-549.99	-547.84	-550.09
$E_{\rm HCOO}$	-1.89	-1.56	-1.53	-1.56	-1.63	-1.65	-2.03	-2.48

Table S8. The detailed electronic energy (E_*) and binding energy (E) of critical intermediates (*CO₂,

*COOH, *CO, *H, and *HCOO) in Cr-based heteronuclear BACs during electrochemical CO₂RR.

Species	Cr-Fe	Cr-Co	Cr-Ir	Cr-Rh	Cr-Ni	Cr-Cu	Cr-Zn	Cr-Ga
E*	-528.19	-526.94	-527.81	-526.56	-524.73	-521.57	-519.20	-521.30
E_{*CO2}	-551.38	-550.04	-550.92	-549.67	-547.83	-544.67	-542.30	-544.41
$E_{\rm CO_2}$	-0.23	-0.14	-0.15	-0.14	-0.14	-0.14	-0.14	-0.15
<i>Е</i> *соон	-554.77	-552.72	-553.73	-552.32	-549.94	-546.68	-545.34	-548.00
E _{COOH}	-0.43	0.37	0.23	0.40	0.95	1.05	0.01	-0.54
E_{*CO}	-544.63	-543.49	-544.41	-543.12	-541.52	-538.29	-535.88	-537.47
$E_{\rm CO}$	-1.05	-0.88	-0.91	-0.89	-0.88	-0.91	-1.00	-0.87

$E_{*\mathrm{H}}$	-532.04	-530.88	-531.81	-530.53	-528.89	-525.65	-523.21	-524.66
E_{H}	-0.10	0.10	0.06	0.07	0.12	0.10	0.05	0.31
E _{*HCOO}	-555.99	-554.40	-555.23	-553.98	-552.52	-549.32	-547.44	-549.59
E _{HCOO}	-1.34	-0.71	-0.66	-0.67	-0.80	-0.86	-1.47	-1.91

Table S9. The detailed electronic energy (E_*) and binding energy (E) of critical intermediates (*CO₂, *COOH, *CO, *H, and *HCOO) in Mn-based heteronuclear BACs during electrochemical CO₂RR.

Species	Mn-Fe	Mn-Co	Mn-Ir	Mn-Rh	Mn-Ni	Mn-Cu	Mn-Zn	Mn-Ga
E*	-528.19	-526.94	-527.81	-526.56	-524.73	-521.57	-519.20	-521.30
E_{*CO2}	-551.38	-550.04	-550.92	-549.67	-547.83	-544.67	-542.30	-544.41
$E_{\rm CO_2}$	-0.23	-0.14	-0.15	-0.14	-0.14	-0.14	-0.14	-0.15
E_{*COOH}	-554.77	-552.72	-553.73	-552.32	-549.94	-546.68	-545.34	-548.00
E _{COOH}	-0.43	0.37	0.23	0.40	0.95	1.05	0.01	-0.54
E*co	-544.11	-542.77	-543.58	-542.38	-540.65	-537.38	-535.04	-537.05
$E_{\rm CO}$	-0.85	-0.75	-0.70	-0.74	-0.84	-0.74	-0.76	-0.67
$E_{*\mathrm{H}}$	-531.49	-530.14	-531.01	-529.75	-528.01	-524.75	-522.38	-524.47
$E_{ m H}$	0.15	0.25	0.24	0.26	0.17	0.27	0.27	0.28
E*HCOO	-554.91	-553.28	-554.08	-552.84	-551.35	-548.23	-546.46	-549.04
$E_{ m HCOO}$	-0.56	-0.19	-0.12	-0.12	-0.46	-0.51	-1.11	-1.58

Table S10. The detailed electronic energy (E_*) , zero-point energy (E_{ZPE}) , entropy corrections (TS), free energy (G), and Gibbs free energy change (ΔG) of critical intermediate in Mo-based

Species	E*	E_{*CO2}	$E_{\rm ZPE}$	TS	G	ΔG	E _{*COOH}	$E_{\rm ZPE}$	TS	G	ΔG
Mo-Fe	-528.60	-552.32	0.32	0.14	-552.15	-0.33	-555.45	0.64	0.16	-554.98	0.36
Mo-Co	-527.34	-550.52	0.32	0.16	-550.36	0.18	-553.26	0.62	0.18	-552.81	0.75
Mo-Ir	-528.41	-551.50	0.32	0.23	-551.41	0.20	-554.37	0.62	0.17	-553.91	0.70
Mo-Rh	-527.17	-550.26	0.32	0.24	-550.18	0.19	-552.72	0.63	0.16	-552.25	1.13
Mo-Ni	-525.25	-548.32	0.30	0.19	-548.21	0.25	-550.65	0.61	0.12	-550.17	1.24
Mo-Cu	-522.24	-545.31	0.29	0.18	-545.20	0.25	-548.15	0.62	0.17	-547.69	0.70
Mo-Zn	-520.01	-543.23	0.29	0.15	-543.09	0.13	-546.62	0.63	0.17	-546.16	0.12
Mo-Ga	-521.30	-545.26	0.31	0.15	-545.10	-0.59	-548.11	0.63	0.17	-547.65	0.65
		E_{*CO}	$E_{\rm ZPE}$	TS	G	ΔG	E_{*HCOO}	$E_{\rm ZPE}$	TS	G	ΔG
Mo-Fe		-545.16	0.21	0.13	-545.08	-0.99	-556.41	0.61	0.15	-555.96	-0.36
Mo-Co		-543.94	0.20	0.13	-543.87	-1.94	-555.16	0.61	0.23	-554.78	-0.98
Mo-Ir		-544.98	0.21	0.13	-544.90	-1.88	-556.17	0.60	0.24	-555.80	-0.94
Mo-Rh		-543.74	0.20	0.14	-543.68	-2.32	-554.97	0.61	0.22	-554.58	-0.95
Mo-Ni		-541.96	0.32	0.14	-541.78	-2.49	-553.09	0.61	0.23	-552.71	-1.05
Mo-Cu		-538.95	0.20	0.15	-538.89	-2.09	-550.05	0.60	0.18	-549.63	-0.98
Mo-Zn		-536.67	0.21	0.13	-536.60	-1.32	-548.07	0.64	0.17	-547.60	-1.07
Mo-Ga		-537.90	0.20	0.13	-537.82	-1.06	-549.63	0.65	0.15	-549.14	-0.59
		$E_{*\text{HCOOH}}$	$E_{\rm ZPE}$	TS	G	ΔG					
Mo-Fe		-559.17	0.93	0.24	-558.48	0.92					
Мо-Со		-557.82	0.92	0.25	-557.14	1.09					
Mo-Ir		-558.89	0.92	0.26	-558.22	1.02					
Mo-Rh		-557.70	0.92	0.24	-557.02	1.01					
Mo-Ni		-555.80	0.92	0.25	-555.13	1.03					
Mo-Cu		-552.61	0.92	0.25	-551.94	1.13					
Mo-Zn		-550.29	0.92	0.27	-549.64	1.40					
Mo-Ga		-552.49	0.93	0.28	-551.83	0.75					
		$E_{*\mathrm{H}}$	$E_{\rm ZPE}$	TS	G	ΔG	E_{*H2}	$E_{\rm ZPE}$	TS	G	ΔG
Mo-Fe		-532.59	0.18	0.02	-532.42	-0.37	-535.35	0.29	0.17	-535.23	0.64
Mo-Co		-531.49	0.18	0.01	-531.32	-0.54	-534.09	0.31	0.18	-533.96	0.82
Mo-Ir		-532.54	0.19	0.01	-532.37	-0.52	-535.16	0.31	0.19	-535.04	0.78
Mo-Rh		-531.31	0.18	0.01	-531.14	-0.52	-533.92	0.31	0.19	-533.80	0.79
Mo-Ni		-529.44	0.18	0.01	-529.27	-0.57	-532.01	0.32	0.02	-531.71	1.01
Mo-Cu		-526.42	0.15	0.01	-526.27	-0.58	-528.99	0.37	0.11	-528.73	0.99
Mo-Zn		-524.13	0.18	0.01	-523.96	-0.51	-526.77	0.27	0.07	-526.57	0.85
Mo-Ga		-525.35	0.18	0.02	-525.18	-0.43	-528.06	0.30	0.14	-527.90	0.73

heteronuclear BACs during electrochemical CO2RR towards C1 product and competitive HER

Table S11. The detailed electronic energy (E_*), zero-point energy (E_{ZPE}), entropy corrections (TS),

Species	E*	E*CO2	$E_{\rm ZPE}$	TS	G	ΔG	E*cooh	$E_{\rm ZPE}$	TS	G	ΔG
Ta-Fe	-530.26	-555.00	0.31	0.16	-554.85	-1.39	-558.23	0.63	0.17	-557.77	0.28
Ta-Co	-529.04	-553.49	0.31	0.17	-553.35	-1.10	-556.09	0.61	0.19	-555.66	0.88
Ta-Ir	-530.08	-554.35	0.32	0.15	-554.17	-0.88	-556.93	0.64	0.16	-556.46	0.91
Ta-Rh	-528.89	-553.14	0.32	0.15	-552.97	-0.87	-555.51	0.63	0.16	-555.05	1.12
Ta-Ni	-527.40	-551.98	0.30	0.19	-551.86	-1.26	-553.46	0.63	0.16	-552.99	2.07
Ta-Cu	-524.33	-548.93	0.30	0.19	-548.82	-1.28	-551.29	0.62	0.17	-550.84	1.18
Ta-Zn	-522.05	-546.63	0.30	0.18	-546.51	-1.25	-549.28	0.62	0.18	-548.84	0.87
Ta-Ga	-523.37	-548.28	0.30	0.16	-548.14	-1.56	-550.89	0.63	0.18	-550.44	0.89
		E_{*CO}	$E_{\rm ZPE}$	TS	G	ΔG	E_{*HCOO}	$E_{\rm ZPE}$	TS	G	ΔG
Ta-Fe		-546.77	0.19	0.10	-546.69	0.19	-559.22	0.63	0.14	-558.73	-0.43
Ta-Co		-545.69	0.19	0.09	-545.59	-0.81	-558.05	0.60	0.25	-557.71	-0.91
Ta-Ir		-546.80	0.19	0.16	-546.76	-1.19	-559.02	0.61	0.23	-558.64	-1.02
Ta-Rh		-545.56	0.19	0.15	-545.52	-1.36	-557.82	0.60	0.24	-557.45	-1.04
Ta-Ni		-543.91	0.20	0.14	-543.86	-1.75	-556.39	0.61	0.24	-556.02	-0.71
Ta-Cu		-540.90	0.23	0.15	-540.82	-0.86	-553.29	0.61	0.24	-552.93	-0.66
Ta-Zn		-538.64	0.19	0.04	-538.49	-0.54	-550.93	0.63	0.18	-550.47	-0.51
Ta-Ga		-539.96	0.19	0.09	-539.86	-0.30	-552.51	0.64	0.16	-552.03	-0.45
		E*HCOOH	$E_{\rm ZPE}$	TS	G	ΔG					
Ta-Fe		-561.63	0.91	0.25	-560.97	1.21					
Ta-Co		-560.43	0.91	0.24	-559.76	1.40					
Ta-Ir		-561.52	0.93	0.24	-560.84	1.25					
Ta-Rh		-560.31	0.92	0.25	-559.63	1.27					
Ta-Ni		-558.65	0.90	0.25	-558.00	1.47					
Ta-Cu		-555.57	0.88	0.20	-554.89	1.49					
Ta-Zn		-553.28	0.91	0.24	-552.61	1.31					
Ta-Ga		-554.44	0.89	0.14	-553.69	1.79					
		$E_{*\mathrm{H}}$	$E_{\rm ZPE}$	TS	G	ΔG	E_{*H2}	$E_{\rm ZPE}$	TS	G	ΔG
Ta-Fe		-534.89	0.18	0.02	-534.73	-1.03	-537.11	0.29	0.11	-536.93	1.25
Ta-Co		-533.68	0.18	0.02	-533.52	-1.03	-535.79	0.32	0.15	-535.63	1.34
Ta-Ir		-534.66	0.18	0.01	-534.49	-0.96	-536.84	0.30	0.14	-536.69	1.25
Ta-Rh		-533.44	0.18	0.01	-533.28	-0.94	-535.65	0.31	0.14	-535.48	1.25
Ta-Ni		-532.06	0.18	0.02	-531.90	-1.05	-534.15	0.32	0.16	-533.99	1.35
Ta-Cu		-528.98	0.18	0.01	-528.81	-1.03	-531.08	0.33	0.16	-530.92	1.34
Ta-Zn		-526.66	0.18	0.02	-526.50	-1.00	-528.80	0.31	0.17	-528.66	1.29
Ta-Ga		-527.93	0.18	0.02	-527.77	-0.95	-530.12	0.30	0.19	-530.01	1.21

free energy (G), and Gibbs free energy change (ΔG) of critical intermediate in Ta-based heteronuclear BACs during electrochemical CO₂RR towards C1 product and competitive HER

Table S12. The detailed electronic energy (E_*) , zero-point energy (E_{ZPE}) , entropy corrections (TS), free energy (G), and Gibbs free energy change (ΔG) of critical intermediate in V-based heteronuclear BACs during electrochemical CO₂RR towards C1 product and competitive HER

1	
product.	

Species	E*	E_{*CO2}	$E_{\rm ZPE}$	TS	G	ΔG	E*cooh	$E_{\rm ZPE}$	TS	G	ΔG
V-Fe	-528.40	-552.25	0.32	0.15	-552.08	-0.48	-555.76	0.64	0.15	-555.27	0.01
V-Co	-527.11	-550.86	0.32	0.11	-550.65	-0.34	-553.71	0.63	0.16	-553.24	0.61
V-Ir	-528.09	-551.78	0.33	0.16	-551.62	-0.32	-554.64	0.64	0.16	-554.15	0.66
V-Rh	-526.82	-550.48	0.33	0.15	-550.31	-0.28	-553.21	0.64	0.16	-552.73	0.78
V-Ni	-525.46	-548.54	0.32	0.23	-548.44	0.22	-551.20	0.57	0.22	-550.84	0.80
V-Cu	-522.25	-545.31	0.33	0.22	-545.21	0.25	-548.14	0.62	0.18	-547.70	0.70
V-Zn	-519.85	-542.94	0.28	0.17	-542.83	0.23	-546.57	0.62	0.18	-546.12	-0.09
V-Ga	-521.41	-545.31	0.31	0.15	-545.15	-0.53	-548.51	0.63	0.18	-548.06	0.29
		E_{*CO}	$E_{\rm ZPE}$	TS	G	ΔG	$E_{*\text{HCOO}}$	$E_{\rm ZPE}$	TS	G	ΔG
V-Fe		-544.52	0.20	0.14	-544.47	-0.09	-556.45	0.61	0.14	-555.98	-0.45
V-Co		-543.47	0.20	0.10	-543.38	-1.02	-554.82	0.62	0.19	-554.38	-0.28
V-Ir		-544.46	0.20	0.16	-544.42	-1.16	-555.78	0.61	0.22	-555.39	-0.33
V-Rh		-543.16	0.20	0.16	-543.12	-1.28	-554.54	0.60	0.24	-554.17	-0.41
V-Ni		-541.62	0.20	0.15	-541.57	-1.61	-553.24	0.61	0.22	-552.85	-0.96
V-Cu		-538.45	0.22	0.10	-538.33	-1.52	-550.06	0.61	0.22	-549.67	-1.02
V-Zn		-536.07	0.20	0.10	-535.97	-0.74	-548.03	0.63	0.19	-547.60	-1.32
V-Ga		-537.60	0.20	0.09	-537.50	-0.32	-550.04	0.64	0.17	-549.57	-0.97
		$E_{*\text{HCOOH}}$	$E_{\rm ZPE}$	TS	G	ΔG					
V-Fe		-559.18	0.94	0.25	-558.50	0.93					
V-Co		-558.04	0.94	0.24	-557.34	0.49					
V-Ir		-559.07	0.94	0.23	-558.36	0.49					
V-Rh		-557.78	0.94	0.23	-557.07	0.55					
V-Ni		-556.01	0.93	0.25	-555.33	0.97					
V-Cu		-552.78	0.92	0.20	-552.06	1.06					
V-Zn		-550.40	0.92	0.20	-549.68	1.37					
V-Ga		-551.85	0.92	0.20	-551.13	1.89					
		$E_{*\mathrm{H}}$	$E_{\rm ZPE}$	TS	G	ΔG	E_{*H2}	$E_{\rm ZPE}$	TS	G	ΔG
V-Fe		<i>Е</i> _{*H} -532.00	<i>Е</i> _{ZPE} 0.17	TS 0.02	G -531.84	ΔG 0.00	Е _{*H2} -535.15	<i>Е</i> _{ZPE} 0.30	TS 0.21	G -535.05	ΔG 0.24
V-Fe V-Co		<i>E</i> _{*H} -532.00 -530.78	E _{ZPE} 0.17 0.18	TS 0.02 0.02	G -531.84 -530.62	ΔG 0.00 -0.06	<i>E</i> _{*H2} -535.15 -533.86	E _{ZPE} 0.30 0.31	TS 0.21 0.19	G -535.05 -533.74	ΔG 0.24 0.33
V-Fe V-Co V-Ir		<i>E</i> _{*H} -532.00 -530.78 -531.70	E _{ZPE} 0.17 0.18 0.18	TS 0.02 0.02 0.02	G -531.84 -530.62 -531.54	Δ <i>G</i> 0.00 -0.06 -0.01	<i>E</i> * _{H2} -535.15 -533.86 -534.85	<i>E</i> _{ZPE} 0.30 0.31 0.32	TS 0.21 0.19 0.15	G -535.05 -533.74 -534.67	ΔG 0.24 0.33 0.32
V-Fe V-Co V-Ir V-Rh		E _{*H} -532.00 -530.78 -531.70 -530.43	E _{ZPE} 0.17 0.18 0.18 0.17	TS 0.02 0.02 0.02 0.02	G -531.84 -530.62 -531.54 -530.27	ΔG 0.00 -0.06 -0.01 0.00	<i>E</i> *H2 -535.15 -533.86 -534.85 -533.58	<i>E</i> _{ZPE} 0.30 0.31 0.32 0.32	TS 0.21 0.19 0.15 0.16	G -535.05 -533.74 -534.67 -533.43	ΔG 0.24 0.33 0.32 0.30
V-Fe V-Co V-Ir V-Rh V-Ni		E _{*H} -532.00 -530.78 -531.70 -530.43 -529.17	<i>E</i> _{ZPE} 0.17 0.18 0.18 0.17 0.18	TS 0.02 0.02 0.02 0.02 0.01	G -531.84 -530.62 -531.54 -530.27 -529.00	ΔG 0.00 -0.06 -0.01 0.00 -0.10	<i>E</i> * _{H2} -535.15 -533.86 -534.85 -533.58 -532.21	<i>E</i> _{ZPE} 0.30 0.31 0.32 0.32 0.29	TS 0.21 0.19 0.15 0.16 0.11	G -535.05 -533.74 -534.67 -533.43 -532.03	ΔG 0.24 0.33 0.32 0.30 0.42
V-Fe V-Co V-Ir V-Rh V-Ni V-Cu		E _{*H} -532.00 -530.78 -531.70 -530.43 -529.17 -525.94	<i>E</i> _{ZPE} 0.17 0.18 0.18 0.17 0.18 0.17	TS 0.02 0.02 0.02 0.02 0.01 0.01	G -531.84 -530.62 -531.54 -530.27 -529.00 -525.78	ΔG 0.00 -0.06 -0.01 0.00 -0.10 -0.08	<i>E</i> *H2 -535.15 -533.86 -534.85 -533.58 -532.21 -528.98	E_{ZPE} 0.30 0.31 0.32 0.32 0.29 0.28	TS 0.21 0.19 0.15 0.16 0.11 0.09	G -535.05 -533.74 -534.67 -533.43 -532.03 -528.79	$\Delta G \\ 0.24 \\ 0.33 \\ 0.32 \\ 0.30 \\ 0.42 \\ 0.43$
V-Fe V-Co V-Ir V-Rh V-Ni V-Cu V-Zn		E _{*H} -532.00 -530.78 -531.70 -530.43 -529.17 -525.94 -523.52	<i>E</i> _{ZPE} 0.17 0.18 0.18 0.17 0.18 0.17 0.17	TS 0.02 0.02 0.02 0.02 0.01 0.01 0.02	G -531.84 -530.62 -531.54 -530.27 -529.00 -525.78 -523.36	ΔG 0.00 -0.06 -0.01 0.00 -0.10 -0.08 -0.07	E_{*H2} -535.15 -533.86 -534.85 -533.58 -532.21 -528.98 -526.60	$E_{ZPE} \\ 0.30 \\ 0.31 \\ 0.32 \\ 0.32 \\ 0.29 \\ 0.28 \\ 0.30$	TS 0.21 0.19 0.15 0.16 0.11 0.09 0.10	G -535.05 -533.74 -534.67 -533.43 -532.03 -528.79 -526.40	$\begin{array}{c} \Delta G \\ 0.24 \\ 0.33 \\ 0.32 \\ 0.30 \\ 0.42 \\ 0.43 \\ 0.41 \end{array}$

Table S13. The detailed electronic energy (E_*) , zero-point energy (E_{ZPE}) , entropy corrections (TS), free energy (G), and Gibbs free energy change (ΔG) of critical intermediate in Ti-based heteronuclear BACs during electrochemical CO₂RR towards C1 product and competitive HER

Species	E*	E_{*CO2}	$E_{\rm ZPE}$	TS	G	ΔG	E_{*COOH}	$E_{\rm ZPE}$	TS	G	ΔG
Ti-Fe	-527.65	-551.90	0.32	0.16	-551.74	-0.89	-555.39	0.64	0.16	-554.91	0.03
Ti-Co	-526.44	-550.64	0.32	0.17	-550.49	-0.85	-553.70	0.64	0.16	-553.23	0.46
Ti-Ir	-527.47	-551.55	0.33	0.15	-551.38	-0.69	-554.67	0.64	0.16	-554.18	0.40
Ti-Rh	-526.20	-550.25	0.32	0.17	-550.10	-0.69	-553.22	0.64	0.16	-552.74	0.56
Ti-Ni	-524.82	-548.30	0.29	0.23	-548.24	-0.21	-551.01	0.59	0.21	-550.63	0.81
Ti-Cu	-521.65	-545.17	0.32	0.09	-544.95	-0.09	-548.03	0.60	0.21	-547.65	0.50
Ti-Zn	-519.31	-542.83	0.29	0.23	-542.77	-0.25	-546.29	0.62	0.17	-545.84	0.13
Ti-Ga	-520.88	-545.19	0.30	0.16	-545.05	-0.96	-548.53	0.63	0.18	-548.08	0.16
		E_{*CO}	$E_{\rm ZPE}$	TS	G	ΔG	$E_{*\text{HCOO}}$	$E_{\rm ZPE}$	TS	G	ΔG
Ti-Fe		-543.54	0.18	0.17	-543.53	0.50	-555.81	0.63	0.17	-555.35	-0.16
Ti-Co		-542.36	0.19	0.18	-542.35	-0.01	-554.66	0.62	0.21	-554.26	-0.32
Ti-Ir		-543.35	0.19	0.16	-543.33	-0.03	-555.62	0.60	0.25	-555.27	-0.44
Ti-Rh		-542.09	0.19	0.16	-542.06	-0.21	-554.34	0.60	0.25	-553.98	-0.43
Ti-Ni		-540.83	0.19	0.16	-540.80	-1.06	-553.13	0.61	0.24	-552.77	-1.09
Ti-Cu		-537.65	0.19	0.17	-537.64	-0.88	-549.94	0.60	0.18	-549.52	-1.13
Ti-Zn		-535.32	0.18	0.18	-535.31	-0.36	-547.61	0.63	0.18	-547.16	-0.95
Ti-Ga		-537.04	0.19	0.16	-537.02	0.18	-549.46	0.64	0.16	-548.98	-0.48
		$E_{*\text{HCOOH}}$	$E_{\rm ZPE}$	TS	G	ΔG					
Ti-Fe		-558.71	0.93	0.29	-558.07	0.73					
Ti-Co		-557.55	0.93	0.27	-556.89	0.82					
Ti-Ir		-558.60	0.93	0.25	-557.92	0.79					
Ti-Rh		-557.33	0.93	0.26	-556.65	0.78					
Ti-Ni		-555.95	0.93	0.25	-555.27	0.95					
Ti-Cu		-552.79	0.93	0.24	-552.10	0.87					
Ti-Zn		-550.44	0.93	0.25	-549.76	0.85					
Ti-Ga		-552.07	0.91	0.18	-551.34	1.09					
		$E_{^{*}\mathrm{H}}$	$E_{\rm ZPE}$	TS	G	ΔG	E_{*H2}	$E_{\rm ZPE}$	TS	G	ΔG
Ti-Fe		-531.15	0.15	0.02	-531.02	0.07	-534.40	0.29	0.11	-534.22	0.25
Ti-Co		-529.99	0.15	0.02	-529.86	0.03	-533.19	0.31	0.13	-533.01	0.29
Ti-Ir		-530.94	0.15	0.02	-530.81	0.11	-534.23	0.32	0.17	-534.09	0.17
Ti-Rh		-529.61	0.15	0.02	-529.48	0.17	-532.96	0.32	0.17	-532.82	0.11
Ti-Ni		-528.56	0.16	0.02	-528.43	-0.16	-531.58	0.31	0.14	-531.41	0.46
Ti-Cu		-525.37	0.15	0.02	-525.24	-0.14	-528.40	0.31	0.14	-528.23	0.46

Ti-Zn	-523.02	0.15	0.02	-522.89	-0.14	-526.06	0.30	0.16	-525.92	0.41
Ti-Ga	-524.91	0.15	0.02	-524.78	-0.46	-527.64	0.31	0.20	-527.53	0.70

Table S14. The detailed electronic energy (E_*) , zero-point energy (E_{ZPE}) , entropy corrections (TS), free energy (G), and Gibbs free energy change (ΔG) of critical intermediate in Cr-based heteronuclear BACs during electrochemical CO₂RR towards C1 product and competitive HER

product.

Species	E*	E_{*CO2}	$E_{\rm ZPE}$	TS	G	ΔG	E_{*COOH}	$E_{\rm ZPE}$	TS	G	ΔG
Cr-Fe	-528.49	-551.91	0.32	0.15	-551.73	-0.03	-555.26	0.64	0.15	-554.77	0.16
Cr-Co	-527.53	-550.63	0.32	0.25	-550.56	0.18	-553.45	0.64	0.16	-552.97	0.78
Cr-Ir	-528.42	-551.54	0.32	0.24	-551.46	0.17	-554.57	0.63	0.22	-554.16	0.50
Cr-Rh	-527.15	-550.26	0.32	0.23	-550.17	0.19	-553.11	0.63	0.21	-552.70	0.67
Cr-Ni	-525.56	-548.65	0.32	0.25	-548.58	0.19	-550.63	0.57	0.23	-550.29	1.49
Cr-Cu	-522.30	-545.38	0.32	0.22	-545.28	0.23	-547.75	0.62	0.17	-547.30	1.17
Cr-Zn	-519.81	-542.89	0.31	0.19	-542.77	0.25	-546.09	0.63	0.17	-545.63	0.34
Cr-Ga	-521.52	-544.65	0.32	0.15	-544.49	0.24	-548.38	0.60	0.20	-547.98	-0.29
		E_{*CO}	$E_{\rm ZPE}$	TS	G	ΔG	$E_{*\text{HCOO}}$	$E_{\rm ZPE}$	TS	G	ΔG
Cr-Fe		-544.63	0.21	0.12	-544.54	-0.65	-555.99	0.62	0.19	-555.55	-0.37
Cr-Co		-543.49	0.35	0.23	-543.37	-1.28	-554.40	0.61	0.15	-553.94	0.06
Cr-Ir		-544.41	0.19	0.10	-544.32	-1.05	-555.23	0.60	0.17	-554.80	0.10
Cr-Rh		-543.12	0.14	0.23	-543.21	-1.40	-553.98	0.61	0.22	-553.59	0.03
Cr-Ni		-541.52	0.14	0.18	-541.57	-2.17	-552.52	0.61	0.21	-552.12	-0.09
Cr-Cu		-538.29	0.15	0.19	-538.33	-1.91	-549.32	0.63	0.16	-548.84	-0.11
Cr-Zn		-535.88	0.15	0.22	-535.96	-1.22	-547.44	0.64	0.17	-546.97	-0.76
Cr-Ga		-537.47	0.15	0.18	-537.49	-0.40	-549.59	0.64	0.16	-549.11	-1.18
		$E_{*\text{HCOOH}}$	$E_{\rm ZPE}$	TS	G	ΔG					
Cr-Fe		-558.75	0.94	0.22	-558.03	0.97					
Cr-Co		-557.62	0.91	0.27	-556.97	0.42					
Cr-Ir		-558.55	0.91	0.26	-557.90	0.35					
Cr-Rh		-557.27	0.91	0.27	-556.62	0.41					
Cr-Ni		-555.62	0.91	0.20	-554.91	0.66					
Cr-Cu		-552.40	0.90	0.22	-551.72	0.57					
Cr-Zn		-549.98	0.91	0.20	-549.28	1.14					
Cr-Ga		-551.81	0.91	0.10	-551.01	1.55					
		$E_{\rm *H}$	$E_{\rm ZPE}$	TS	G	ΔG	E_{*H2}	$E_{\rm ZPE}$	TS	G	ΔG
Cr-Fe		-532.04	0.19	0.01	-531.87	0.07	-535.37	0.30	0.16	-535.23	0.08
Cr-Co		-530.88	0.20	0.01	-530.69	0.29	-534.28	0.30	0.14	-534.11	0.03
Cr-Ir		-531.81	0.19	0.01	-531.63	0.24	-535.18	0.32	0.17	-535.03	0.05
Cr-Rh		-530.53	0.19	0.01	-530.35	0.25	-533.91	0.32	0.17	-533.76	0.03

Cr-Ni	-528.89	0.20	0.01	-528.71	0.30	-532.30	0.28	0.10	-532.13	0.03
Cr-Cu	-525.65	0.19	0.01	-525.47	0.28	-529.05	0.28	0.09	-528.86	0.06
Cr-Zn	-523.21	0.19	0.01	-523.03	0.23	-526.49	0.32	0.10	-526.27	0.20
Cr-Ga	-524.66	0.19	0.01	-524.48	0.49	-528.27	0.29	0.12	-528.11	-0.18

Table S15. The detailed electronic energy (E_*), zero-point energy (E_{ZPE}), entropy corrections (TS),

free energy (G), and Gibbs free energy change (ΔG) of critical intermediate in Mn-based heteronuclear BACs during electrochemical CO₂RR towards C1 product and competitive HER

Species	E*	E_{*CO2}	$E_{\rm ZPE}$	TS	G	ΔG	E_{*COOH}	$E_{\rm ZPE}$	TS	G	ΔG
Mn-Fe	-528.19	-551.38	0.39	0.15	-551.14	0.26	-554.77	0.61	0.16	-554.33	0.01
Mn-Co	-526.94	-550.04	0.32	0.24	-549.96	0.19	-552.72	0.62	0.17	-552.27	0.88
Mn-Ir	-527.81	-550.92	0.32	0.24	-550.83	0.18	-553.73	0.63	0.16	-553.26	0.77
Mn-Rh	-526.56	-549.67	0.32	0.23	-549.58	0.19	-552.32	0.62	0.17	-551.87	0.91
Mn-Ni	-524.73	-547.83	0.32	0.24	-547.76	0.18	-549.94	0.59	0.18	-549.54	1.41
Mn-Cu	-521.57	-544.67	0.32	0.23	-544.58	0.20	-546.68	0.58	0.20	-546.30	1.48
Mn-Zn	-519.20	-542.30	0.31	0.19	-542.17	0.23	-545.34	0.60	0.19	-544.93	0.44
Mn-Ga	-521.30	-544.41	0.32	0.24	-544.34	0.17	-548.00	0.61	0.19	-547.58	-0.04
		E_{*CO}	$E_{\rm ZPE}$	TS	G	ΔG	$E_{*\text{HCOO}}$	$E_{\rm ZPE}$	TS	G	ΔG
Mn-Fe		-544.11	0.29	0.07	-543.90	-0.46	-554.54	0.60	0.17	-554.11	0.48
Mn-Co		-542.77	0.22	0.13	-542.68	-1.29	-553.17	0.61	0.17	-552.72	0.68
Mn-Ir		-543.58	0.21	0.09	-543.46	-1.09	-554.01	0.61	0.22	-553.62	0.66
Mn-Rh		-542.38	0.22	0.14	-542.30	-1.32	-552.78	0.61	0.22	-552.40	0.63
Mn-Ni		-540.65	0.21	0.08	-540.51	-1.86	-551.21	0.61	0.22	-550.82	0.38
Mn-Cu		-537.38	0.23	0.07	-537.23	-1.82	-547.96	0.61	0.14	-547.49	0.54
Mn-Zn		-535.04	0.20	0.03	-534.87	-0.82	-545.71	0.63	0.18	-545.26	0.36
Mn-Ga		-537.05	0.23	0.08	-536.90	-0.21	-547.88	0.63	0.18	-547.43	0.36
		$E_{*\text{HCOOH}}$	$E_{\rm ZPE}$	TS	G	ΔG					
Mn-Fe		-558.42	0.91	0.26	-557.77	-0.21					
Mn-Co		-557.07	0.91	0.28	-556.44	-0.27					
Mn-Ir		-557.95	0.91	0.27	-557.32	-0.25					
Mn-Rh		-556.73	0.91	0.26	-556.07	-0.23					
Mn-Ni		-554.86	0.91	0.22	-554.17	0.10					
Mn-Cu		-551.74	0.94	0.23	-551.04	-0.10					
Mn-Zn		-549.42	0.91	0.27	-548.77	-0.07					
Mn-Ga		-551.49	0.92	0.18	-550.76	0.12					
		$E_{^{*}\mathrm{H}}$	$E_{\rm ZPE}$	TS	G	ΔG	$E_{\rm *H2}$	$E_{\rm ZPE}$	TS	G	ΔG
Mn-Fe		-531.49	0.20	0.01	-531.29	0.34	-535.03	0.32	0.17	-534.89	-0.15
Mn-Co		-530.14	0.20	0.01	-529.94	0.44	-533.68	0.29	0.05	-533.45	-0.06

Mn-Ir	-531.01	0.20	0.01	-530.81	0.44	-534.56	0.29	0.05	-534.31	-0.05
Mn-Rh	-529.75	0.20	0.01	-529.56	0.45	-533.32	0.29	0.11	-533.14	-0.13
Mn-Ni	-528.01	0.20	0.01	-527.82	0.36	-531.49	0.30	0.04	-531.24	0.03
Mn-Cu	-524.75	0.20	0.01	-524.55	0.46	-528.19	0.35	0.05	-527.89	0.12
Mn-Zn	-522.38	0.13	0.01	-522.25	0.39	-525.96	0.29	0.13	-525.80	-0.09
Mn-Ga	-524.47	0.19	0.01	-524.29	0.46	-528.05	0.29	0.12	-527.89	-0.15

Table S16. The detailed electronic energy (E_*), zero-point energy (E_{ZPE}), entropy corrections (TS), and free energy (G) of isolated molecule during electrochemical CO₂RR towards C1 product and competitive HER product.

Species	E*	E_{ZPE}	TS	G
CO_2	-22.96	0.31	0.66	-23.21
CO	-14.84	0.14	0.61	-15.31
H_2O	-14.25	0.59	0.58	-14.24
H_2	-6.76	0.27	0.40	-6.89
НСООН	-29.97	0.90	0.99	-30.06

In this work, we consider two coordination forms of BACs, i.e., 3-coordinated and 4-coordinated metal-anchored N-doped graphene, as shown in Fig. S1. We select three metals, Fe, Mn, and Mo, as the representative to compare the DFT energy of the different coordination forms. Due to the significantly lower energy of 4-coordinated form, thus all of our subsequent investigation are based on the 4-coordinated form of BACs.

Fig. S1 The most stable structures and the DFT energy of 3-coordinated and 4coordinated metal-anchored N-doped graphene homonuclear BACs.

Fig. S2 The most stable structures of *CO₂ adsorbed on 23 kinds of homonuclear BACs.

Fig. S3 The most stable structures of *COOH adsorbed on 23 kinds of homonuclear BACs.

Fig. S4 The most stable structures of *CO adsorbed on 23 kinds of homonuclear BACs.

Fig. S5 The most stable structures of *HCOO adsorbed on 23 kinds of homonuclear

Fig. S6 The most stable structures of *HCOOH adsorbed on 23 kinds of homonuclear BACs.

BACs.

Fig. S7 The most stable structures of $*CO_2$ adsorbed on 48 kinds of heteronuclear BACs.

Fig. S8 The most stable structures of *COOH adsorbed on 48 kinds of heteronuclear BACs.

Fig. S9 The most stable structures of *CO adsorbed on 48 kinds of heteronuclear BACs.

Fig. S10 The most stable structures of *HCOO adsorbed on 48 kinds of heteronuclear BACs.

Fig. S11 The most stable structures of *HCOOH adsorbed on 48 kinds of heteronuclear BACs.

REFERENCES

 X. Y. Guo, J. X. Gu, S. R. Lin, S. L. Zhang, Z. F. Chen and S. P. Huang, *J. Am. Chem. Soc.*, 2020, 142, 5709-5721.