Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supporting Information 1 2 Exceeding three-electron reactions in $Na_{3+2x}Mn_{1+x}Ti_{1-x}(PO_4)_3$ 3 NASICON Cathode with High Energy Density for Sodium-ion **4 Batteries** 5 Jiefei Liu¹, Kangshou Lin¹, Yu Zhao¹, Yu Zhou¹, Xianhua Hou^{1,2*}, Xiang Liu^{1,3}, 6 Hongtao Lou⁴, Kwok-ho Lam⁵, Fuming Chen^{1*} 7 8¹ Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum 9 Materials, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Guangdong 10 Engineering Technology Research Center of Efficient Green Energy and Environment 11 Protection Materials, School of Physics and Telecommunication Engineering, South 12 China Normal University, Guangzhou 510006, China 13² SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., 14 Oingyuan 511517, China 15 3 School of Energy Science and Engineering, Institute of Advanced Materials, 16 Nanjing University of Technology, Nanjing 210009, China ⁴ Guangdong Lingguang New Material Co., Ltd, Zhaoqing, 526108, China 18 ⁵ Department of Electrical Engineering, Hong Kong Polytechnic University, 19 Hunghom, Kowloon, Hong Kong 20 E-mail addresses: houxianhua@m.scnu.edu.cn; fmchen@m.scnu.edu.cn 21 22 23 24 25 26 27 28 29 30 Calculation of the theoretical capacity of $Na_{3,4}Mn_{1,2}Ti_{0,8}(PO_4)_{3:}$

1 The theoretical capacity is calculated using the formula: C=nF/3.6 M (mAh/g),¹ where 2 n, F, and M represent the transfer electron number per mole material, Faraday 3 constant and molecular weight. Specifically, the theoretical capacity of $NM_{1,2}T_{0,8}P$ 4 can be obtained by the below process: (3.2mol * 96500 C/mol) / (467.3 g/mol * 3.6 5 C/mAh) = 183.56 mAh g⁻¹.

6 Calculation of the average voltage: V=E/C, E and C represent energy density and
7 capacity, respectively. Both data of E and C can read from the Battery LAND
8 CT2001A battery testing system.

9

17

10 Preparation of Full cell and electrochemical test.

11 The hard carbon (HC) anode was directly purchased from BTR New Energy Materials 12 Inc. The HC anode was cycled for 5 cyles at 100 mA g⁻¹ in 1M NaClO₄ dissovled 13 EC/DMC with 5%FEC electrolyte. Then the HC anodes were dissambled in a 14 glovebox filled with argon and matched with $NM_{1,2}T_{0.8}P$ cathode 1M NaClO₄ 15 dissovled EC/DMC with 5%FEC electrolyte with close to capacity. The $NM_{1,2}T_{0.8}P$ 16 //HC full cell was measured with the voltage window of 0.5-4.2V.

2 Figure S1. Rietveld refinement of XRD pattern: (a) NMTP. (b) NM_{1.15}T_{0.85}P. (c)
3 NM_{1.2}T_{0.8}P. (d) NM_{1.3}T_{0.7}P.

1

5

7 Figure S2. The EDS spectrum of $NM_{1.2}T_{0.8}P$.

2 Figure S3. (a) The N₂ absorption-desorption isotherms of $NM_{1,2}T_{0.8}P$. (b) The 3 corresponding pore dize distribution curves.

6

7 **Figure S4**. The XRD pattern of $NM_{1.5}T_{0.5}P$ sample.

8

9

10 Figure S5. The XRD patterns of $NM_{1,2}T_{0,8}P$ and $NM_{1,2}T_{0,8}P$ calcined in air with the

11 same heating process of TG.

2 Figure S6. (a) The XRD pattern of NM_{1.1}T_{0.9}P. (b) The charge/discharge profile of
3 NM_{1.1}T_{0.9}P at 0.1C. (c) The rate performance of NM_{1.1}T_{0.9}P. (d) The long cycling
4 performance of NM_{1.1}T_{0.9}P at 1C and 5C.

5 The prepared $NM_{1.1}T_{0.9}P$ sample possesses a typical NASICON structure, which can 6 deliver a highest capacity of 149.1 mAh g⁻¹ at 0.1C. The $NM_{1.1}T_{0.9}P$ exhibits a 7 superior cycling stability, which can deliver a reversible capacity of 119 mAh g⁻¹ at 8 1C and retain 81% capacity retention after 500 cycles. Even at large current of 5C, the 9 $NM_{1.1}T_{0.9}P$ can still deliver a reversible capacity of 100.2 mAh g⁻¹ with the 81.5% 10 capacity retention after 1000 cycles.

2 Figure S7. The charge/discharge profiles of carbon derived from critic acid at 15mA
3 g⁻¹ within the voltage window of 1.5-4.3V.

4 Within the voltage window of 1.5 to 4.3V, the carbon derived from critic acid can 5 only deliver a reversible capacity of 4 mAh g⁻¹ at 0.1C (Fig. S7). Therefore, the 6 capacity contribution of carbon in $NM_{1.2}T_{0.8}P$ compounds can be negligible.

8

9 Figure S8. The linear relationships between Z' and reciprocal square root of angular
10 rate (ω^{-1/2}) in the low-frequency region.

11 For EIS, the diffusion coefficient of Na⁺ can be calculated with this equation: $D_{Na^+} = R^2T^2/2A^2n^2F^4C^2\sigma^2$. Where R is gas constant, T is the absolute temperature, F is 13 Faraday constant, A is surficial area of the electrode, n is the number of transferred 14 electrons, C is the concentration of Na⁺ in the lattice, and σ is the Warburg factor and 15 can be obtained from the line of $Z' \sim \omega$ -1/2. Because the NM_{1.15}T_{0.85}P possesses the 16 smallest σ value and the σ value of NM_{1.2}T_{0.8}P is largest, D_{Na⁺} of NM_{1.15}T_{0.85}P is 17 largest and D_{Na⁺} of NM_{1.2}T_{0.8}P is smallest.

2 **Figure S11.** (a) The corresponding coulombic efficiency of NMTP, $NM_{1.15}T_{0.85}P$, and 3 $NM_{1.2}T_{0.8}P$ at 1 C. (b) The corresponding coulombic efficiency of $NM_{1.3}T_{0.7}P$, and 4 $NM_{1.4}T_{0.6}P$ at 1 C.

- 5
- 6

8 **Figure S12.** (a) CV curves of NMTP cathode under different scan rates. (b) The 9 corresponding linear relationships between I_p and $v^{1/2}$ of different redox peaks. (c) CV 10 curves of NM_{1.15}T_{0.85}P cathode under different scan rates. (d) The corresponding 11 linear relationships between I_p and $v^{1/2}$ of different redox peaks.

Figure S13. (a) The Rietveld refinement for XRD pattern of NM_{1.2}T_{0.8}P charged to
4.3V. (b) The Rietveld refinement for XRD pattern of NM_{1.2}T_{0.8}P discharged to 1.5V.

6

7 **Figure S14.** (a) The cycling performance of hard carbon anode at 100 mA g⁻¹. (b) The 8 charge/discharge profiles of hard carbon anode at 100 mA g⁻¹. (c) The cycling 9 performance of $NM_{1,2}T_{0.8}P//HC$ full cell at 1C (150 mA g⁻¹). (d) The charge/discharge 10 profiles of $NM_{1,2}T_{0.8}P//HC$ full cell at 0.2C.

After fully charged state, the full cell exhibits a potential of 3.77V. At 0.2C, the full
 cell can deliver a specific capacity of 103.2 mAh g⁻¹. After 20 cycles at 1C, the full
 cells can retain capacity retention of 76.1%. The hard carbon anode was directly
 purchased from BTR New Energy Materials Inc. Therefore, the anodes don't exhibit
 superior property which may cause the poor performance of full cell.

8 Fig. S15. The XRD pattern of $NM_{1,2}T_{0,8}P$ with decreasing critic acid content during

9 synthesis process.

Table S1. ICP-OES chemical analysis results of $NM_{1,2}T_{0,8}P$

Elements	Na	Mn	Ti
W/W%	13.4387	12.1339	6.739457
Atomic ratio	4.17	1.57	1

Table S2. The fitted value of Rct from EIS

Samples	NMTP/C	NM _{1.15} T _{0.85} P/C	NM _{1.2} T _{0.8} P/C
Rct/Ω	271.7	342.4	452.3

Sample	Peak1	Peak2	Peak3	Peak4	Peak5	Peak6
NMTP/	4.27×	7.23×	8.0×	9.5×	5.05×	3.92×
$\mathrm{cm}^2~\mathrm{s}^{-1}$	10 ⁻¹⁰	10 ⁻¹¹	10 ⁻¹¹	10 ⁻¹¹	10^{-11}	10^{-11}
NM _{1.15} T _{0.85} P/	2.59×	8.55×	1.46×	2.11×	8.16×	2.0×
$\mathrm{cm}^2~\mathrm{s}^{-1}$	10 ⁻¹⁰	10 ⁻¹¹	10^{-10}	10 ⁻¹⁰	10^{-11}	10^{-10}
NM _{1.2} T _{0.8} P/	5.83×	6.02×	1.07×	8.32×	5.1 ×	5.23×
$\mathrm{cm}^2~\mathrm{s}^{-1}$	10 ⁻¹¹	10 ⁻¹¹	10^{-10}	10^{-11}	10^{-11}	10^{-11}

5 Table S3. The evaluated $D_{Na^{+}} \mbox{ from CV curves}.$

10 Table S4. The fitted lattice parameters of various samples based on Rietveld11 refinement.

Sample	a/ Å	c/ Å	Volume/ Å ³
NMTP	8.80	21.76	1460.2
NM _{1.15} T _{0.85} P	8.86	21.64	1472.2
NM _{1.2} T _{0.8} P	8.90	21.83	1498.2
NM _{1.3} T _{0.7} P	8.90	21.98	1508.2

1 Table S5. The energy density comparison with reported various cathode materials for

2 SIBs.

Sample	Current density mA/g	Specific capacity mAh/g	Energy density Wh/kg	Reference
NM _{1.15} T _{0.85} P	15	181.4	560.2	This work
$NM_{1.2}T_{0.8}P$	15	176.1	539.5	This work
Na ₃ MnTi(PO ₄) ₃	15	160.3	442	This work
Na ₄ MnCr(PO ₄) ₃	5.5	131	470	Ref ²
$Na_4Fe_3(PO_4)_2(P_2O_7)$	12.9	128	357.5	Ref ³
Na ₃ MnTi(PO ₄) ₃	23.4	114	410	Ref ⁴
$Na_3V_2(PO_4)_3$	58.8	116.3	382.9	Ref ⁵
Na ₄ MnCr(PO ₄) ₃	16	160.5	566.5	Ref ⁶
$Na_3V_2(PO_4)_2F_3$	128	119.9	446.4	Ref ⁷
Na ₄ MnV(PO ₄) ₃	55	109.8	380	Ref ⁸
Na _{3.5} Mn _{0.5} V _{1.5} (PO ₄) ₃	110	109.1	373.5	Ref ⁹
Na ₄ Mn ₂ Co(PO ₄) ₂ P ₂	12.9	96.1	371	Ref ¹⁰
$Na_{3.1}Fe_4[Fe(CN)_6]_3$	12	123	344	Ref ¹¹
Na _{0.78} Ni _{0.23} Mn _{0.69} O ₂	12.1	138	448.5	Ref ¹²
$Na_{0.75}Ni_{0.82}Co_{0.12}Mn$	20	171	478.8	Ref ¹³
$Na_3V_{2-x}Fe_x(PO_4)_2F_3$	12.8	118	433	Ref ¹⁴

space group = R-3c		$R_p = 4.86\%$			$R_{wp} = 6.25\%$)
a (Å) =	= 8.801568	c (Å) = 2	1.765656		α (°) = 90	
β (°) = 90	γ (°) =	= 120		$V(Å^3) = 1460.2$	234
Atom	Х	у	Z	Mult	Occupancy	Uiso
Nal	0.000000	0.000000	0.000000	6	0.8830	0.165000
Na2	0.639149	0.000000	0.250000	18	0.6984	0.007700
Mn	0.000000	0.000000	0.149350	12	0.5000	0.040591
Ti	0.000000	0.000000	0.149350	12	0.5000	0.071422
Р	0.298300	0.000000	0.250000	18	1.0000	0.031300
01	0.186680	0.176844	0.079159	36	1.0000	0.008812
02	0.026290	0.205683	0.195142	36	1.0000	0.035081

Table S6. Detailed structural information of NMTP derived from Rietveld refinement

4 **Table S7.** Detailed structural information of $NM_{1.15}T_{0.85}P$ derived from Rietveld 5 refinement

space group = $R-3c$		$R_p = 4.80\%$			$R_{wp} = 6.16\%$,	
a (Å) =	= 8.863012	c(Å) = 2	1.641275		α (°) = 90		
β (°) = 90	γ (°) :	= 120		$V(Å^3) = 1472.2$	283	
Atom	Х	У	Z	Mult	Occupancy	Uiso	
Na1	0.000000	0.000000	0.000000	6	0.8909	0.019783	
Na2	0.642032	0.000000	0.250000	18	0.7838	0.039920	
Mn	0.000000	0.000000	0.149406	12	0.5750	0.022073	
Ti	0.000000	0.000000	0.149406	12	0.4250	0.053507	
Р	0.298300	0.000000	0.250000	18	1.000	0.022137	
01	0.186680	0.176844	0.079159	36	1.000	0.08238	
O2	0.026290	0.205683	0.195142	36	1.000	0.00676	

6

1 Table S8. Detailed structural information of $NM_{1,2}T_{0,8}P$ derived from Rietveld

2 refinement

space gr	roup = R-3c	$R_p = 5$	5.16%	$R_{wp} = 6.80\%$		
a (Å) =	8.902052	c (Å) = 2	1.831387		α (°) = 90	
β (^o) = 90	γ (°) =	= 120		V (Å ³) = 1498.2	08
Atom	Х	У	Z	Mult	Occupancy	Uiso
Nal	0.000000	0.000000	0.000000	6	0.9120	0.00622
Na2	0.642032	0.000000	0.250000	18	0.7053	0.02630
Mn	0.000000	0.000000	0.148938	12	0.6000	0.06436
Ti	0.000000	0.000000	0.148938	12	0.4000	0.00054
Р	0.298300	0.000000	0.250000	18	1.000	0.03838
01	0.186680	0.176844	0.079159	36	1.000	0.02210
02	0.026290	0.205683	0.195142	36	1.000	0.06329

3

4 **Table S9.** Detailed structural information of $NM_{1.3}T_{0.7}P$ derived from Rietveld 5 refinement

space gr	roup = R-3c	$R_p = 6.03\%$			$R_{wp} = 8.36\%$	
a (Å)	= 8.900	c (Å) =	21.982		α (°) = 90	
β (^o) = 90	γ (°) =	= 120		$V(Å^3) = 1508.2$	00
Atom	Х	у	Z	Mult	Occupancy	Uiso
Nal	0.000000	0.000000	0.000000	6	0.9432	0.00622
Na2	0.642032	0.000000	0.250000	18	0.8800	0.02630
Mn	0.000000	0.000000	0.149350	12	0.650	0.01125
Ti	0.000000	0.000000	0.149350	12	0.350	0.00896
Р	0.298300	0.000000	0.250000	18	1.000	0.03130
01	0.186680	0.176844	0.079159	36	1.000	0.03290
O2	0.026290	0.205683	0.195142	36	1.000	0.02600

1 Table S10. The sodium storage performance comparison with reported NMTP.

Sample	Specific	ICE	Reaction	Energy	Reference
Sample	specific	ICL .	Reaction	Elicigy	Kelefenee
	Capacity/		electron	density	
	mAh g ⁻¹		number	Wh kg ⁻¹	
NMTP/C	80	70%	2	-	Ref ¹⁵
NMTP/C@rGO	114	-	2	410	Ref ⁴
NMTP/C	173	-	3	-	Ref ¹
rGO@NMTP-C	173	-	3	Over 500	Ref ¹⁶
$NM_{1,2}T_{0.8}$	176	91.8	3.07	539	This work
NM _{1.15} T _{0.85} P	181.4	80.3	3.13	560	This work

Table S11. The lattice parameters comparison with reported NMTP.

Material	a (Å)	c (Å)	V (Å ³)	Reference
NMTP	8.801568	21.765656	1460.234	This work
NMTP	8.82621	21.72350	1465.578	Ref ¹⁶
NMTP	8.8343	21.6654	1464.35	Ref ¹

1 **References:**

- T. Zhu, P. Hu, X. Wang, Z. Liu, W. Luo, K. A. Owusu, W. Cao, C. Shi, J. Li,
 L. Zhou and L. Mai, *Adv. Energy Mater.*, 2019, 9, 1803436.
- J. Wang, Y. Wang, D. H. Seo, T. Shi, S. Chen, Y. Tian, H. Kim and G. Ceder,
 Adv. Energy Mater., 2020, 10, 1903968.
- 6 3. T. Yuan, Y. Wang, J. Zhang, X. Pu, X. Ai, Z. Chen, H. Yang and Y. Cao,
 7 Nano Energy, 2019, 56, 160-168.
- 8 4. T. Zhu, P. Hu, C. Cai, Z. Liu, G. Hu, Q. Kuang, L. Mai and L. Zhou, *Nano*9 *Energy*, 2020, **70**, 104548.
- 10 5. X. Cao, A. Pan, B. Yin, G. Fang, Y. Wang, X. Kong, T. Zhu, J. Zhou, G. Cao
 and S. Liang, *Nano Energy*, 2019, **60**, 312-323.
- J. Zhang, Y. Liu, X. Zhao, L. He, H. Liu, Y. Song, S. Sun, Q. Li, X. Xing and
 J. Chen, *Adv. Mater.*, 2020, **32**, 1906348.
- L. Deng, F.-D. Yu, Y. Xia, Y.-S. Jiang, X.-L. Sui, L. Zhao, X.-H. Meng, L.-F.
 Que and Z.-B. Wang, *Nano Energy*, 2021, 82, 105659.
- 16 8. H. Li, T. Jin, X. Chen, Y. Lai, Z. Zhang, W. Bao and L. Jiao, *Adv. Energy Mater.*, 2018, 8, 1801418.
- J. Zhang, X. Zhao, Y. Song, Q. Li, Y. Liu, J. Chen and X. Xing, *Energy Storage Materials*, 2019, 23, 25-34.
- L. Tang, X. Liu, Z. Li, X. Pu, J. Zhang, Q. Xu, H. Liu, Y. G. Wang and Y. Xia,
 ACS Appl. Mater. Interfaces, 2019, 11, 27813-27822.
- 22 11. W. Ren, Z. Zhu, M. Qin, S. Chen, X. Yao, Q. Li, X. Xu, Q. Wei, L. Mai and C.
 23 Zhao, *Adv. Funct. Mater.*, 2019, 29.
- 24 12. C. Ma, J. Alvarado, J. Xu, R. J. Clement, M. Kodur, W. Tong, C. P. Grey and
 25 Y. S. Meng, *J. Am. Chem. Soc.*, 2017, 139, 4835-4845.
- 26 13. J. Yang, M. Tang, H. Liu, X. Chen, Z. Xu, J. Huang, Q. Su and Y. Xia, *Small*,
 27 2019, 15, e1905311.
- 28 14. J. Y. Park, Y. Shim, Y.-i. Kim, Y. Choi, H. J. Lee, J. Park, J. E. Wang, Y. Lee,
 29 J. H. Chang, K. Yim, C. W. Ahn, C.-W. Lee, D. K. Kim and J. M. Yuk, J.
 30 Mater. Chem. A, 2020, 8, 20436-20445.
- 31 15. H. Gao, Y. Li, K. Park and J. B. Goodenough, *Chem. Mater.*, 2016, 28, 65536559.
- 33 16. H. Li, M. Xu, C. Gao, W. Zhang, Z. Zhang, Y. Lai and L. Jiao, *Energy* 34 Storage Materials, 2020, 26, 325-333.