Electronic Supplementary Information for

Impact of Mg and Ti Doping in O3 Type NaNi_{1/2}Mn_{1/2}O₂ on Reversibility and Phase Transition During Electrochemical Na Intercalation

Kei Kubota,^{a,b} Naoya Fujitani,^a Yusuke Yoda,^a Kazutoshi Kuroki,^a Yusuke Tokita ^a and Shinichi Komaba *^{a,b}

- ^{a.} Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- ^{b.} Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan.

Figure S1 Magnified synchrotron powder XRD patterns of pristine Na[Ni_{1/2}Mn_{1/2}]O₂ (Non-sub), Na[Ni_{4/9}Mn_{1/2}Mg_{1/18}]O₂ (Mg-sub), Na[Ni_{1/2}Mn_{1/3}Ti_{1/6}]O₂ (Ti-sub), and Na[Ni_{4/9}Mn_{1/3}Mg_{1/18}Ti_{1/6}]O₂ (Mg-Ti-sub) in the diffraction angle range of 13.2° – 14.5°. The patterns in a wider-angle range are shown in Figure 1(a).

Figure S2 (a) Rietveld refinement results on the synchrotron XRD pattern of as-prepared Non-sub. (b) Magnified patterns in the diffraction angle range of $13.0^{\circ} - 14.5^{\circ}$.

XRD patt	ern.							
$R_{\rm wp}$ = 4.57%, $R_{\rm e}$ = 2.36%								
1 st phase: 99.8 mass% Space group: <i>R</i> 3 <i>m</i> <i>a</i> = 2.96277(4) Å, <i>c</i> = 15.9132(2) Å, <i>V</i> = 120.972(3) Å ³								
Atom	Wyckoff site	x	У	Ζ	G	<i>В</i> / Ų		
Na	3b	0	0	1/2	0.909(2)	0.60(3)		
Ni	3a	0	0	0	1/2	0.389(7)		
Mn	3a	0	0	0	1/2	= <i>B</i> (Ni)		
0	6c	0	0	0.26791(5)	1.0	0.89(2)		
2 nd phase: 0.2 mass% Space group: $Fm\overline{3}m$ $a = 4.1793(7) Å, V = 73.00(2) Å3R_{\rm B} = 0.93\%, R_{\rm F} = 0.67\%$								
Atom	Wyckoff site	x	у	Ζ	G	Β / Ų		
Ni	4a	0	0	0.0	1.0	0.3		
0	4b	1/2	1/2	1/2	1.0	0.4		

Table S1 Refined structural parameters of as-prepared Non-sub by Rietveld method on the synchrotron XRD pattern.

Figure S3 (a) Rietveld refinement results on the synchrotron XRD pattern of as-prepared Mg-sub. (b) Magnified patterns in the diffraction angle range of $13.0^{\circ} - 14.5^{\circ}$.

$R_{\rm wp}$ = 6.50%, $R_{\rm e}$ = 1.88%							
1 st phas	e: 98.77 mass%						
Space g	roup: R3m						
a = 2.95	5958(2) Å, <i>c</i> = 15.94	4768(8) Å <i>, V</i> :	= 120.9731(12	2) Å ³			
$R_{\rm B} = 1.5$	0%, R _F = 0.98%						
Atom	Wyckoff site	x	у	Ζ	g	Β / Ų	
Na	3b	0	0	1/2	0.890(2)	0.75(2)	
Ni	3a	0	0	0	4/9	0.354(6)	
Mn	3a	0	0	0	1/2	= <i>B</i> (Ni)	
Mg 3a 0 0 0			1/18	= <i>B</i> (Ni)			
0	6c	0	0	0.26836(5)	1.0	0.99(2)	
2 nd pha Space g <i>a</i> = 4.18 <i>R</i> _B = 1.3	se: 0.78 mass% roup: <i>Fm</i> 3 <i>m</i> 373(6) Å, V = 73.42 1%, R _F = 0.89%	0(18) Å ³					
Atom	Wyckoff site	X	у	Ζ	g	<i>В</i> / Ų	
Mg	4a	0	0	0.0	0.69(11)	0.3	
Ni	4a	0	0	0.0	= 1- <i>g</i> (Mg)	0.3	
0	4b	1/2	1/2	1/2	1.0	0.4	
3^{rd} phase: 0.45 mass% Space group: <i>Fm</i> 3 <i>m</i> <i>a</i> = 4.2099(2) Å, <i>V</i> = 74.613(7) Å ³ <i>R</i> _B = 1.31%, <i>R</i> _F = 0.43%							
Atom	Wyckoff site	x	у	Ζ	g	<i>Β</i> / Å ²	
Mg	4a	0	0	0.0	1.0	0.3	
0	4b	1/2	1/2	1/2	1.0	0.4	

Table S2 Refined structural parameters of as-prepared Mg-sub by Rietveld method on the synchrotron XRD pattern.

Figure S4 (a) Rietveld refinement results on the synchrotron XRD pattern of as-prepared Ti-sub. (b) Magnified patterns in the diffraction angle range of $13.0^{\circ} - 14.5^{\circ}$.

Table S3 Refined structural parameters of as-prepared Ti-sub by Rietveld method on the synchrotron XRD pattern.

R _{wp} = 8.35%, R _e = 2.12% Space group: R3m a = 2.97512(3) Å, c = 15.95640(11) Å, V = 122.314(2) Å R _B = 1.06%, R _F = 0.68%								
Atom	Wyckoff site	X	У	Ζ	g	В / Ų		
Na	3b	0	0	1/2	0.922(3)	0.53(3)		
Ni	3a	0	0	0	1/2	0.354(10)		
Mn	3a	0	0	0	1/3	= <i>B</i> (Ni)		
Ti	3a	0	0	0	1/6	= <i>B</i> (Ni)		
0	6c	0	0	0.26758(7)	1.0	0.81(3)		

Figure S5 Rietveld refinement results on the synchrotron XRD pattern of as-prepared Mg-Ti-sub. (b) Magnified patterns in the diffraction angle range of $13.0^{\circ} - 14.5^{\circ}$.

1 st nhas	e 99 77 mass%					
Space g	roup: <i>R</i> 3 <i>m</i>					
a = 2.97	2587(4) Å, <i>c</i> = 15.9	922(2) Å, V =	122.649(3) Å	3		
$R_{\rm B} = 0.7$	4%, R _F = 0.56%		.,			
Atom	Wyckoff site	x	у	Ζ	g	Β / Ų
Na	3b	0	0	1/2	0.910(2)	0.61(3)
Ni	3a	0	0	0	4/9	0.33(1)
Mn	3a	0	0	0	1/3	= <i>B</i> (Ni)
Mg	3a	0	0	0	1/18	= <i>B</i> (Ni)
Ti 3a 0 0				0	1/6	= <i>B</i> (Ni)
0	6c	0	0	0.26771(6)	1.0	0.87(2)
a = 4.19 $R_{\rm B} = 1.0$	90(1) Å, V = 73.57(3 4%, R _F = 0.60%	3) ų				
Atom	Wyckoff site	X	У	Ζ	g	В / Ų
Mg	4a	0	0	0.0	0.4	0.3
Ni	4a	0	0	0.0	0.6	0.3
0	4b	1/2	1/2	1/2	1.0	0.4
3^{rd} phases Space g a = 4.20 $R_{\rm B} = 0.8$	se: 0.06 mass% roup: <i>Fm</i> 3 <i>m</i>)9(1) Å, V = 74.54(4 7%, R _F = 0.48%	4) Å ³				
Atom	Wyckoff site	X	У	Ζ	g	Β / Ų
Mg	4a	0	0	0.0	1.0	0.3
0	4b	1/2	1/2	1/2	1.0	0.4

Table S4 Refined structural parameters of as-prepared Mg-Ti-sub by Rietveld method on the synchrotron XRD pattern.

R_{wp} = 6.02%, R_e = 1.63%

		Molar elemental ratio determined by ICP-AES				
Sample name	largeted composition	Na	Ni	Mn	Mg	Ti
Non-sub	Na[Ni _{0.5} Mn _{0.5}]O ₂	1.04	0.48	0.52	-	-
Mg-sub	$Na[Ni_{0.44}Mn_{0.5}Mg_{0.06}]O_2$	1.06	0.44	0.52	0.04	-
Ti-sub	$Na[Ni_{0.5}Mn_{0.33}Ti_{0.17}]O_2$	1.09	0.50	0.34	-	0.16
Mg-Ti-sub	$Na[Ni_{0.44}Mn_{0.33}Mg_{0.06}Ti_{017}]O_2$	1.09	0.45	0.36	0.03	0.17

Table S5 ICP-AES results for as-prepared $Na[Ni_{1/2-x}Mn_{1/2-y}Mg_xTi_y]O_2$ samples.

Figure S6 Electrolyte solvent dependency: (a) initial charge-discharge curves and (b) discharge capacities and (c) Coulombic efficiencies of Non-sub electrodes in non-aqueous Na cells filled with 1.0 mol dm⁻³ NaPF₆ dissolved in EC:DEC (1:1 v/v), EC:PC (1:1 v/v), or PC.

Figure S7 *Ex situ* Fourier-transformed (a, b) Ni K-edge, (c, d) Mn K-edge, and (e) Ti K-edge EXAFS spectra of (a, c) Non-sub and (b, d, e) Mg-Ti-sub electrodes. The tested electrodes were prepared by charging and discharging in Na cells followed by taking the electrodes from the cells.

Figure S8 *Operando* XRD patterns of (a) Non-sub and (b) Mg-Ti-sub during initial charging to 4.5 V. Magnified patterns of the thick lines are shown in Fig. S9 with the peak intensities of an Al-coated Be window and an Al current collector subtracted.

Figure S9 Selected operando XRD patterns of (a) Non-sub and (b) Mg-Ti-sub during initial charging to 4.5 V. The peak intensities for an Al-coated Be window and an Al current collector are subtracted from the original patterns of Fig. S8.

$R_{wp} = 6.47\%, R_e = 2.19\%$ Space group: $P2_1/m$									
$a = 4.9527(3) \text{ A}, b = 5.7081(2) \text{ A}, c = 5.8405(2) \text{ A}, \beta = 105.708(4)^{\circ}, V = 158.95(1) \text{ A}^{\circ}$ $R_{\text{B}} = 1.12\%, R_{\text{F}} = 0.59\%$									
Atom	Wyckoff site	x	у	Ζ	g	Β / Ų			
Na1	2e	0.712(1)	1/4	0.5089(8)	0.76(1)	1.5			
Na2	4f	= <i>x</i> (Na1) – 1/2	0	= <i>z</i> (Na1)	= 1/2 – 1/2*g(Na1)	1.5			
Ni1	2a	0	0	0	0.5	0.12(2)			
Mn1	2a	0	0	0	0.5	= <i>B</i> (Ni1)			
Ni2	2e	1/2	1/4	0.0117(6)	0.5	= <i>B</i> (Ni1)			
Mn2	2e	1/2	1/4	= <i>z</i> (Ni2)	0.5	= <i>B</i> (Ni1)			
01	2e	0.878(3)	1/4	0.144(2)	1	0.66(6)			
02	2e	0.130(3)	1/4	0.827(2)	1	= <i>B</i> (O1)			
03	4f	0.386(2)	0	0.195(1)	1	= <i>B</i> (O1)			

Table S6 Rietveld refinement results for the ex situ synchrotron XRD pattern of the Non-sub electrode charged to 3.35 V.

Figure S10 Schematic illustrations of structural models with stacking faults for (a) $P-O_e-O_f$ phase and (b) $O_e-O_f(Me)$ phase and layer components.

Figure S11 Simulated XRD patterns of O_e - O_f type stacking faulted structures in comparison to the observed ones in the charged state of 4.50 V.

Figure S12 (a) *Ex situ* synchrotron XRD patterns of Non-sub, Mg-sub, Ti-sub, and Mg-Ti-sub electrodes after charging to 4.5 V and floating for 2 h. (b) Comparison of *ex situ* synchrotron XRD pattern for Mg-sub and with simulated patterns of O1 and O3 type structures.

Figure S13 Schematic illustrations of a monoclinic O'3 type structure: (a) a layered structure and interslab distance and (b) an in-plane structure and Me-Me distances.