1	Supporting Information for Journal of Materials Chemistry A				
2					
3	Konjac glucomannan biopolymer as a multifunctional binder to build solid				
4	permeable interface on $Na_3V_2(PO_4)_3/C$ cathodes for				
5	high-performance sodium ion batteries				
6	Yuyao Zhang ^a ; Xiaoying Zhu ^a ; Dan Kai ^b ; Yinzhu Jiang ^c ; Qingyu Yan ^{d,*} ; Baoliang Chen ^{a,*}				
7					
8	a. Department of Environmental Science, Zhejiang Provincial Key Laboratory of Organic Pollution Process				
9	and Control, Zhejiang University, Hangzhou 310058, China;				
10	b. Institute of Materials Research & Engineering, A*STAR (Agency for Science, Technology and Research),				
11	Singapore 117602, Singapore;				
12	c. School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China;				
13	d. School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue,				
14	4 Singapore 639798, Singapore				
15					
16	* Corresponding Author Email:				
17	Prof. Baoliang Chen: blchen@zju.edu.cn Tel: +86-571-8898-2587				
18	Prof. Alex Yan Qingyu: alexyan@ntu.edu.sg Tel: +65-6790-4583				
19	Co-author email addresss				
20	Yuyao Zhang: yuyaozhang@zju.edu.cn				
21	Prof. Xiaoying Zhu: <u>zhux@zju.edu.cn</u>				
22	Prof. Kai Dan: <u>kaid@imre.a-star.edu.sg</u>				
23	Prof. Yinzhu Jiang: <u>yzjiang@zju.edu.cn</u>				
24					
25	Supporting information consists of 15 pages, including this one.				
26 27	There are 2 Tables and 10 Figures.				

28 The calculation of the kinetic properties of the electrodes.

The interfacial resistance (R_{ct}) was utilized to calculate the activation energy (E_a) for the kinetic properties of the electrodes as followed. The i_0 and E_a for Na⁺ ions intercalated into NVP can be determined from Equation 1 and 2 (Butler-Volmer equation and Arrhenius equation).¹ After logarithmic operations, Equation 2 could be transferred as Equation 3.

$$i_0 = RT/nFR_{ct} \tag{1}$$

 $i_0 = Ae^{-E_a/RT}$

 $l_0 = Ae$ $lni_0 = -E_a/RT + \ln A$ (2)
(3)

Where i_0 is the exchange current, *R* is the gas constant, *T* is the temperature, *n* is the transferred electrons' number of the reaction per molecule, *F* is the Faraday constant and *A* is a constant coefficient. Fig. 4b shows the functions of $\ln i_0$ versus 1000/T. The E_a of electrodes using KGM and PVDF as binders are determined to be 64.4 and 78.5 kJ mol⁻¹, respectively.

40

41 The calculation of the Na⁺ ions diffusion coefficient.

42 The Na⁺ ions diffusion coefficient (D_{Na^+}) could be calculated according to Equation 4 (Randles-43 Sevcik equation):

44

$$i_p = 2.69 \times 10^5 n^{3/2} A D_{Na+}^{1/2} C_{Na} v^{1/2}$$
⁽⁴⁾

Where i_p refers to the peak current, *n* refers to the number of transferred electrons of the reaction per molecule, *A* refers to contact area between the electrolyte and electrodes, D_{Na+} refers to the Na⁺ ions diffusion coefficient, C_{Na+} refers to the concentrations of Na⁺ ions in the electrode and *v* refers to scan rates.

49

51 Table S1. A survey of electrochemical properties of NVP in sodium ion batteries

52

Electrode description	Binder	Rate performance	Cycling life	Ref.
NVP-KGM	KGM	86 mA h g ⁻¹ at 10 C	93.3% retention after 200	This work
		71.6 mA h g ⁻¹ at 30 C	cycles at 0.5 C 90.1% retention after 3000	
		63.1 mA h g ⁻¹ at 50 C	cycles at 10 C	
			74.1% retention after 10000 cycles at 50 C	
Na ₃ V ₂ (PO ₄) ₃ /CNT	PTFE	86.2 mA h g ⁻¹ at 5 C	65.3% retention after 200	2
			cycles at 5 C	
NVP/C	PVDF	54.3 mA h g ⁻¹ at 50 C	87.5% retention after 8000	3
			cycles at 2 C	
NVP/C porous hollow	PVDF	29.5 mA h g ⁻¹ at ~4 C	90% retention after 300 cycles	4
sphere			at ~0.2 C	
NVP@C@HC	PVDF	60.4 mA h g ⁻¹ at 50 C	83.3% retention after 3000	5
			cycles at 40 C	
NVP/graphene	PVDF	83.5 mA h g ⁻¹ at 10 C	93% retention after 100 cycles	6
			at 1 C	
Na ₃ V ₂ (PO ₄) ₃ /N-doped C	PVDF	46.8 mA h g ⁻¹ at 10 C	-	7
NVP/C/rGO	PVDF	80.0 mA h g ⁻¹ at 30 C	94.4% retention after 200	8
			cycles at 1 C	
NVP/CGO	PVDF	70.4 mA h g ⁻¹ at 20 C	95% retention after 1000	9
			cycles at 2 C	
NVP-Freestanding	free	63 mA h g ⁻¹ at 30 C	88.6% retention after 150	10
composite			cycles at 0.5 C	
(C@NVP)@pC	PVDF	74 mA h g ⁻¹ at 100 C	68.9% retention after 1000	11
			cycles at 100 C	
NVP	PVDF	80 mA h g ⁻¹ at 10 C	91.1% retention after 100	12
			cycles at 0.5 C	

Table S2. Calculated Na⁺ ions diffusion coefficient (*D_{Na+}*) of NVP-KGM and NVP-PVDF

$\mathbf{D}_{\mathbf{NA}+}(\mathbf{cm}^2 \mathbf{s}^{-1})$	ANODE	CATHODE
NVP-PVDF	2.17×10 ⁻⁹	2.06×10 ⁻⁹
NVP-KGM	3.91×10 ⁻⁹	3.12×10-9

62 Figure S1. Schematic diagram of tensile adhesion strength tests (contact area: 18

```
63 mm × 18 mm).
```

61

Figure S2. (a) X-ray diffraction of NVP. (b) X-ray diffraction of NVP that was soaked
in KGM solution (water) for 24 h.

Figure S3. (a) The thermogravimetric curve of NVP from 25°C to 600°C. (b) The
SEM image and (c) TEM image of NVP.

- 74 Figure S4. The SEM images of (a) NVP-KGM and (b) NVP-PVDF electrodes before
- 75 electrochemical tests.

Figure S5. The TEM images of (a) NVP-KGM and (b) NVP-PVDF in the detail.

81 Figure S6. Discharge profiles at different current densities from 0.5-50 C.

84 Figure S7. Rate capability test performed on NVP-KGM (NVP: super P: KGM,

85 9:0.5:0.5, w/w) and NVP-PVDF (NVP: super P: PVDF, 7:2:1, w/w) electrodes from
86 0.5-50 C.

Figure S8. (a) Cycle performance at 0.5 C and (b) rate capability test from 0.5-50 C
performed on low-mass-loading NVP-KGM (1.2 mg cm⁻²), high-mass-loading NVPKGM (4.7 mg cm⁻²) and low-mass-loading NVP-PVDF (1.2 mg cm⁻²) electrodes.

96

99 Figure S9. The tensile adhesion-displacement curves of NVP- KGM and NVP- PVDF

- 100 (contact area: $18 \text{ mm} \times 18 \text{ mm}$).
- 101

106 hard carbon.

-

120 **References:**

- J. Zhao, X. Yang, Y. Yao, Y. Gao, Y. Sui, B. Zou, H. Ehrenberg, G. Chen and F. Du, *Advanced Science*, 2018, 5, 1700768.
- 123 2. S. Li, Y. Dong, L. Xu, X. Xu, L. He and L. Mai, *Adv. Mater.*, 2014, 26, 3545-3553.
- Q. Zhang, W. Wang, Y. Wang, P. Feng, K. Wang, S. Cheng and K. Jiang, *Nano Energy*, 2016, 20, 11-19.
- J. Mao, C. Luo, T. Gao, X. Fan and C. Wang, *Journal of Materials Chemistry A*, 2015, 3, 10378-10385.
- 128 5. L. Chen, Y. Zhao, S. Liu and L. Zhao, ACS Appl. Mater. Interfaces, 2017, 9, 44485-44493.
- 129 6. Y. H. Jung, C. H. Lim and D. K. Kim, *Journal of Materials Chemistry A*, 2013, 1, 1135011354.
- 131 7. P. Nie, Y. Zhu, L. Shen, G. Pang, G. Xu, S. Dong, H. Dou and X. Zhang, *Journal of Materials Chemistry A*, 2014, 2, 18606-18612.
- J.-Z. Guo, X.-L. Wu, F. Wan, J. Wang, X.-H. Zhang and R.-S. Wang, *Chem. Eur. J.*, 2015,
 21, 17371-17378.
- 135 9. Y. Zhang, M. Wu, R. Zhang and Y. Huang, ACS Appl. Mater. Interfaces, 2020, 3, 2867-2872.
- 136 10. Q. Ni, Y. Bai, Y. Li, L. Ling, L. Li, G. Chen, Z. Wang, H. Ren, F. Wu and C. Wu, *Small*,
 137 2018, 14.
- 138 11. C. Zhu, K. Song, P. A. van Aken, J. Maier and Y. Yu, Nano Lett., 2014, 14, 2175-2180.
- 139 12. J. Xu, J. Chen, S. Zhou, C. Han, M. Xu, N. Zhao and C.-P. Wong, *Nano Energy*, 2018, 50, 323-330.