Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supplementary information

Mask-painting symmetrical micro-supercapacitors based on scalable, pore size adjustable, N-doped hierarchical porous carbon

Shijin Zhu, Michael Göbel, Petr Formanek, Frank Simon, Michael Sommer^{*}, Soumyadip Choudhury ^{†*}

Shijin Zhu, Prof. Dr. Michael Sommer, Dr. Soumyadip. Choudhury Polymer chemistry, Institute for Chemistry and Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09107 Chemnitz, Germany.

Michael Göbel, Dr. Petr. Formanek, Dr. Frank Simon Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany.

† present address:

Rubber Technology Centre, Indian Institute of Technology Kharagpur, 721302, Kharagpur, West Bengal, India

* <u>soumyadip.choudhury@chemie.tu-chemnitz.de</u>, <u>Michael.sommer@chemie.tu-chemnitz.de</u>

Fig. S1 (a)SEM image and (b) TEM image of nonporous carbon prepared from poly(acrylonitrile) (PAN) by air drying and carbonization.

Fig. S2 SEM images porous carbon prepared from poly(acrylonitrile) (PAN) by a phase inversion method (a), and carbonization (PI carbon) (b).

Fig. S3 Thermogravimetric analysis of nano-CaCO₃.

Fig. S4 TEM image and selected area electron diffraction (SAED) of (a, b) PIC carbon; (c, d) PICK carbon.

Fig. S5 (a) Cumulative pore volume of as prepared porous carbon; (b) Nitrogen adsorption-desorption isotherms of PI and PIC carbon

Fig. S6 (a, b) Raman spectra of PICK carbon.

Fig. S7 XPS wide-scan (left column), C 1s middle column), and N 1s (right column) high-resolution element spectra recorded from (a) pristine PAN (b) PAN films, (c) YP-80F and (d) PICK carbon.

Fig. S8 XPS wide-scan (left column), C 1s middle column), and N 1s (right column) high-resolution element spectra recorded from (a) PI carbon and (b) PIC carbon.

Fig. S9 (a) CV curves of PI and PIC carbon at a scan rate of 5 mV s⁻¹ in 6.0 M KOH. (b) CV curves of PICK carbon at a scan rate of 5 mV s⁻¹ in 6.0 M KOH.

Sample	Mass ratio	Mass ratio	$\mathbf{S}_{\mathrm{BET}}$	Pore Volume	Capacitance
	(PAN: CaCO ₃)	(PIC: KOH)	$(m^2 g^{-1})$	(CC g ⁻¹)	(F g ⁻¹)
PI	-	-	25	0.05	12.8
PIC	1: 1	-	69	0.17	28.1
PICK	1: 1	1: 3	2315	1.72	231.3
PICK-1	1: 1	1: 1	1120	0.74	113.2
PICK-2	1: 1	1: 2	1414	1.03	138.6
PICK-3	2: 1	1: 2	1216	0.89	124.6
PICK-4	2: 1	1: 3	1506	1.09	156.4
PICK-5	3: 1	1: 3	1469	1.04	142.5

 Table S1 Synthesis parameters, Surface area, Pore volume and Capacitance of as prepared carbons.

Fig. S10 (a) Nitrogen adsorption-desorption isotherms and (b) pore size distribution and cumulative pore volume of YP-80F.

Fig. S11 (a) CV curves of PICK carbon; (b) Rate capability of as prepared porous carbon; (c) Comparison of two kinds of PICK on structure and electrochemical properties (SSA: Specific Surface Area; PV: Pore Volume; MC: Micropores content; Cap: capacitance; Rate: Rate capability)

Fig. S12 CV curves of (a) PICK-1, (b) PICK-2, (c) PICK-3, (d) PICK-4, (e) PICK-5 in 1.0 M Na₂SO₄.

Sample	Peak	Position BE(eV)	Atomic Conc (%)	Mass Conc (%)	Capacitance (F g ⁻¹)
PICK-1	C 1s	284.2	80.22	72.54	
	N 1s	399.25	1.71	1.81	113.2
	O 1s	533.26	14.08	16.96	
PICK-2	C 1s	284.2	80.22	72.43	
	N 1s	399.65	1.56	1.64	138.6
	O 1s	532.78	14.02	16.87	
PICK-3	C 1s	284.2	80.3	70.2	
	N 1s	399.89	1.5	1.5	124.6
	O 1s	532.82	11.37	12.47	
PICK-4	C 1s	284.2	87.93	83.94	
	N 1s	399.78	0.52	0.58	156.4
	O 1s	532.37	10.76	13.68	
PICK-5	C 1s	284.59	86.93	80.47	
	N 1s	399.84	0.54	0.58	142.5
	O 1s	532.16	9.63	11.88	

Table S2 Details of XPS results and capacitance of PICK-1, PICK-2, PICK-3, PICK-4 and PICK-5.

Fig. S13 (a) Nitrogen adsorption-desorption isotherms, (b) pore volume and (c) pore size distribution of PIK and PICK carbons.

Fig. S14 (a) CV curves of PIK carbon at different scan rate; (b) CV curves of PIK carbon and PICK carbon at the scan rate of $5mV s^{-1}$; (c) CV curves of PIK carbon and PICK carbon at the scan rate of 100 mV s⁻¹; (d) rate capability of PIK carbon and PICK carbon.

Fig. S15 (a) CV curves of a series of PICK-CNT electrode at a scan rate of 20 mV s⁻¹. (b) Electrochemical impedance spectrum at open circuit potential range from 0.01 Hz to 100 kHz with insert showing the high frequency region.

Electrode/	SBET	Scan rate/		Capacitance			
precursor	(m ² g ⁻¹)	Current density	electrolyte	(F g ⁻¹)	Cycling stability	Reference	
PAN	1886	1.0 A g ⁻¹	1.0 M Na ₂ SO ₄	103.01	~92% (3,000)	Compos. Part B-Eng., 2019, 161, 10.	
PAN-carbon	2370	10 mV s ⁻¹	Pyr14TFSI:PC:EC (3;3;2)	128	75% (1,000)	Nanotechnology, 2019, 30, 355402.	
PAN/PMMA	-	0.5 A g ⁻¹	6.0 M KOH	140.8	95.4% (10,000)	J. Mater. Sci., 2018, 53, 9721.	
LCNFs/PANI/N-9	483	1.0 A g ⁻¹	1.0 M H ₂ SO ₄	199.5	82% (1,000)	Ionics, 2020, 26, 465.	
rGOPKS/PAN	203	2.0 A g ⁻¹	4.0 M KOH	203	90% (5,000)	RSC Adv., 2021, 11, 11233.	
PAN	1986	0.25 A g ⁻¹	-	210	86.8% (3,000)	Electrochem. Commu., 2018, 96, 98.	
NDP-ACMs	613.8	10 mV s ⁻¹	1.0 M H ₂ SO ₄	216	108% (3,000)	Sci. Rep., 2017, 7, 1.	
NDP-CMs	840	2.5 Ag ⁻¹	1.0 M H ₂ SO ₄	246	110% (3,000)	Carbon, 2019, 143, 776.	
PAN	1256.2	10 mV s ⁻¹	[BMIM]BF ₄ -	248.3	99.80%	Electrochim. Acta, 2018, 282, 97.	
PAN/POSS	335.38	5 mV s ⁻¹	-	257.7	-	Mater. Design, 2018, 139, 72.	
PAN	852	0.2 A g ⁻¹	1.0 M ZnSO ₄	261.5	-	Batteries & Supercaps, 2021, 680.	
ACNFs	2439	1.0 A g ⁻¹	6.0 M KOH	267.32	96.7% (5,000)	J. Power Sources, 2019, 437, 226937.	
РМС	1600	0.2 A g ⁻¹	1.0 M H ₂ SO ₄	270	100% (5,000)	RSC Adv., 2017, 7, 43172.	
CNF-3	51.2	0.5 A g ⁻¹	6.0 M KOH	272.05	92% (1,000)	Mater. Res. Express, 2019, 6, 125077.	
PAN/CA	1355	0.1 A g ⁻¹	6.0 M KOH	280	96.8% (2,000)	J. Mater. Sci. 2018, 53, 4527.	
PICK-CNTs	2315	5 mV s ⁻¹	1.0 M Na ₂ SO ₄	286.8	98.2% (20,000)	This work	
PAN	3066	0.5 A g ⁻¹	2.0 M KOH	290	96% (3,000)	J. Mater. Chem. A, 2018, 6, 6891.	
FSCs	763.8	1 mA cm ⁻²	6.0 M KOH	294.7	99.1 (10,000)	Chem. Eng. J., 2019, 364, 70.	
PAN	2146	1.0 A g ⁻¹	6.0 M KOH	302	86% (1,000)	RSC Adv., 2018, 8, 29767.	
PAN	3292.3	0.5 A g ⁻¹	6.0 M KOH	331	89.5% (10,000)	Chem. Eng. J., 2018, 362, 600.	
PAN-800-1	2374	0.5 A g ⁻¹	1.0 M Na ₂ SO ₄ /1.0 M H ₂ SO ₄	390	95.5% (10,000)	ACS Appl. Mater. Inter. 2020, 12, 50.	
PS/PAN	955	0.5 A g ⁻¹	6.0 M KOH	438.5	75.5% (10,000)	ACS Appl. Energy Mater. 2019, 2, 4402.	
PPC	3751	0.5 A g ⁻¹	1.0 M Na ₂ SO ₄	448	96.5% (10, 000)	Carbon, 2019, 152, 120-127.	

Table 3 Comparison on the electrochemical performance of some PAN based carbon.

Fig. S16 Cycling stability of pure PICK carbon at a scan rate of 20 mV s⁻¹.

Fig. S17 Resistance testing of the device before active materials painting

Fig. S18 Image of MSC with logo "AK Sommer".