Electronic Supplementary material for

Accurately Metal-Modulated Bimetallic Metal-Organic Frameworks as an Advanced Trifunctional Electrocatalyst

Xin Chen,¹ Bing Shao,¹ Meng-Juan Tang,¹ Xing-Lu He,¹ Fu-Jie Yang,³ Ze-Ping Guo,⁴ Zhong Zhang,¹ Chun-Ting He,^{*2} Fu-Ping Huang,^{*1} Jin Huang^{*1}

¹School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China

²Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China

³College Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510275, P. R. China

⁴School of Physical Science and Technology, Guangxi Normal University, Guilin 541004, P. R. China

*E-mail: hct@jxnu.edu.cn, huangfp2010@163.com, huangjin@mailbox.gxnu.edu.cn

Figure S1. (a) The asymmetric unit of Ni₃-MOF (Symmetry codes: A = -x+1, y, -z-1/2; B = -x-1/2, y-1/2, -z-1/2; C = x+3/2, y-1/2, z; D = -x+1/2, -y+1/2, -z; E = x-1/2, y+1/2, z+1/2, hydrogen atoms and guest molecule are omitted for clarity). (b) Threedimensional structure of Ni₃-MOF.

Figure S2. Thermogravimetry curve of Ni₃-MOF measured at N₂ atmosphere.

Figure S3. In-situ warm-keeping PXRD patterns of Ni_3 -MOF under N_2 atmosphere.

Figure S4. PXRD patterns of Ni_3 -MOF in 0.1 M KOH solution (pH = 13).

Figure S5. Infrared spectra of Ni₃-MOF, Ni₂Fe₁-MOF and Ni₁Fe₂-MOF.

Figure S6. Raman spectra of Ni₃-MOF, Ni₂Fe₁-MOF and Ni₁Fe₂-MOF.

Figure S7. SEM images of Ni₃-MOF.

Figure S8. (a) SEM images of Ni_2Fe_1 -MOF. (b) SEM-EDS mapping images of Ni_2Fe_1 -MOF.

Figure S9. (a) SEM images of Ni_1Fe_2 -MOF. (b) SEM-EDS mapping images of Ni_1Fe_2 -MOF.

Figure S10. PXRD patterns of $Ni_{3(1-x)}Fe_{3x}$ -MOF in 0.1 M KOH solution (pH = 13).

Figure S11. XPS summary spectra of Ni₂Fe₁-MOF.

Figure S12. XPS summary spectra of Ni₁Fe₂-MOF.

Figure S13. The diagram of V-shaped tri-nuclear cluster in $Ni_{3(1-x)}Fe_{3x}$ -MOF (x = 0, 0.33, 0.67).

Figure S14. Coordination environment of V-shaped trinuclear clusters in the (a) Fe₁-MOF, (b) Ni₁Fe₂-MOF and (c) NiFe₃-MOF.

Figure S15. (a) LSV OER curves and (b) the corresponding $\eta_{\text{OER-10}}$ of Ni_{3(1-x)}Fe_{3x}-MOF@GC in 0.1m KOH solution (pH 13).

Figure S16. (a) LSV HER curves and (b) the corresponding $\eta_{\text{HER-10}}$ of Ni_{3(1-x)}Fe_{3x}-MOF@GC in 0.1m KOH solution (pH 13).

Figure S17. CV curve of (a) Ni₃-MOF@GC, (b) Ni₂Fe₁-MOF@GC, and (c) Ni₁Fe₂-MOF@GC in O₂-saturated/Ar-saturated 0.1 M KOH solution.

Figure S18. LSV curves at different mass loading of (a) Ni₃-MOF@GC, (b) Ni₂Fe₁-MOF@GC, and (c) Ni₁Fe₂-MOF@GC at 2500 r.p.m. in O₂-saturated 0.1 M. The LSV curves of 20% Pt/C refer to *Nat. Energy* **2016**, *1*, 15006.

Figure S19. LSV curves at different rotation rates (r.p.m.) of (a) Ni₃-MOF@GC, (b) Ni₂Fe₁-MOF@GC, and (c) Ni₁Fe₂-MOF@GC in O₂-saturated 0.1 M KOH solution.

Figure S20. CV curves of in double layer region at scan rates of 5 mV s⁻¹, 10 mV s⁻¹, 20 mV s⁻¹, 50 mV s⁻¹ and 100 mV s⁻¹ of (a) Ni₃-MOF@GC, (b) Ni₂Fe₁-MOF@GC, and (c) Ni₁Fe₂-MOF@GC.

Figure S21. Current density as a function of the scan rate for Ni_3 -MOF@GC, Ni_2Fe_1 -MOF@GC, and Ni_1Fe_2 -MOF@GC, used to indicate the electrochemically active surface area.

Figure S22. Nyquist plots of Ni₃-MOF@GC, Ni₂Fe₁-MOF@GC, and Ni₁Fe₂-MOF@GC.

Figure S23. LSV curves at different rotation rates (r.p.m.) of (a) Ni₃-MOF@GC, (b) Ni₂Fe₁-MOF@GC, and (c) Ni₁Fe₂-MOF@GC in H₂-saturated 0.1 M KOH solution.

Figure S24. LSV curves at 2500 r.p.m. of Ni₃-MOF@GC, Ni₂Fe₁-MOF@GC, Ni₁Fe₂-MOF@GC and 20% Pt/C refer to *Angew. Chem. Int. Ed.* 2019, *58*, 7445.

Figure S25. LSV OER/ORR curves of Ni₃ -MOF@GC, Ni₂Fe₁ -MOF@GC and Ni₁Fe₂ -MOF@GC in 0.1m KOH solution (pH 13).

Figure S26. PXRD patterns of Ni₃-MOF@NiF, Ni₂Fe₁-MOF@NiF and Ni₁Fe₂-MOF@NiF before and after electrocatalysis testing (arrows indicate the characteristic diffraction peaks of Ni).

Figure S27. SEM-EDS mapping images of Ni₃-MOF@NiF (a) before (b) after electrocatalysis testing.

Figure S28. SEM-EDS mapping images of Ni_2Fe_1 -MOF@NiF (a) before (b) after electrocatalysis testing.

Figure S29. SEM-EDS mapping images of Ni_1Fe_2 -MOF@NiF (a) before (b) after electrocatalysis testing.

Figure S30. (a) LSV OER curves and (b) the corresponding $\eta_{\text{OER-10}}$ of Ni_{3(1-x)}Fe_{3x}-MOF@NiF in 0.1m KOH solution (pH 13).

Figure S31. The OER Tafel plots of Ni₃-MOF@NiF, Ni₂Fe₁-MOF@NiF and Ni₁Fe₂-MOF@NiF.

Figure S32. LSV OER curve of Ni₁Fe₂-MOF@NiF repeated three times in 0.1M KOH solution (pH 13).

Figure S33. (a) LSV HER curves and (b) the corresponding $\eta_{\text{HER-10}}$ of $Ni_{3(1-x)}Fe_{3x}$ -MOF@NiF in 0.1m KOH solution (pH 13).

Figure S34. The HER Tafel plots of Ni_3 -MOF@NiF, Ni_2Fe_1 -MOF@NiF and Ni_1Fe_2 -MOF@NiF.

Figure S35. The OER chronopotentiometry curves of (a) Ni_3 -MOF@NiF, (b) Ni_2Fe_1 -MOF@NiF, and (c) Ni_1Fe_2 -MOF@ NiF in 0.1M KOH solution (pH 13).

Figure S36. The HER chronopotentiometry curves of (a) Ni₃-MOF@NiF, (b) Ni₂Fe₁-MOF@NiF, and (c) Ni₁Fe₂-MOF@ NiF in 0.1M KOH solution (pH 13).

Figure S37. The ORR Chronoamperometry curves at the voltage of the electric current density of (a) Ni_3 -MOF@GC, (b) Ni_2Fe_1 -MOF@GC, and (c) Ni_1Fe_2 -MOF@GC in 0.1M KOH solution (pH 13).

Figure S38. (a) LSV overall water splitting curves and (b) the corresponding $\eta_{\text{overall-10}}$ of Ni_{3(1-x)}Fe_{3x}-MOF@NiF in 0.1M KOH solution (pH 13).

Figure S39. The overall water splitting Tafel plots of Ni₃-MOF@NiF, Ni₂Fe₁-MOF@NiF and Ni₁Fe₂-MOF@NiF.

Figure S40. Four elementary OER steps on $Ni_{3(1-x)}Fe_{3x}$ -MOF (x = 0, 0.33, 0.67 and 1) determined by DFT calculations.

Figure S41. High-resolution XPS spectra of Ni_3 -MOF, Ni_2Fe_1 -MOF and Ni_1Fe_2 -MOF for Ni 2*p* orbital.

Figure S42. The calculated overpotentials of ORR with the d-band positions (the scaling relationship between the binding energy of *OH and the d-band positions was also plotted).

Compound	Ni3-MOF				
Chemical formula	$C_{42}H_{30}O_{14}N_{12}Ni_3$				
Formula weight	1102.91				
Temperature (K)	100(10)				
Crystal system	Monoclinic				
Space group	C2/c				
a/Å	9.87079 (13)				
b/Å	30.4338 (4)				
c/Å	16.92775 (17)				
β/°	91.2934 (11)				
V/Å ³	5083.89 (10)				
Ζ	4				
$D_{\rm c}$ /g cm ⁻³	1.441				
R _{int}	0.0325				
R_1 (>2 σ)	0.040				
wR_2 (all data)	0.1056				
Completeness	0.996				
GOF	1.055				

 Table S1. Crystallographic Data and Structural Refinements for Ni3-MOF.

Ni1—O1	2.0235 (15)	Ni2—O2D	2.1227 (15)
Ni1—O1A	2.0235 (15)	Ni2—O3E	1.9982 (16)
Ni1—O2	2.2364 (15)	Ni2—O5	2.0803 (15)
Ni1—O2A	2.2364 (15)	Ni2—O6	2.1353 (16)
Ni1—N6B	2.0304 (19)	Ni2—O7	2.0671 (16)
Ni1—N6C	2.0304 (19)	Ni2—N1	2.0670 (19)

Table S2. Selected bond lengths (Å) and angles (°) for Complexes.

01—Ni1—O1 ⁱ	159.45 (9)	O2 ^{iv} —Ni2—O6	93.56 (6)
O1 ⁱ —Ni1—O2 ⁱ	61.50 (6)	O3 ^v —Ni2—O2 ^{iv}	85.77 (6)
01—Ni1—O2	61.50 (6)	O3 ^v —Ni2—O5	167.00 (7)
O1—Ni1—O2 ⁱ	102.81 (6)	O3 ^v —Ni2—O6	104.28 (6)
O1 ⁱ —Ni1—O2	102.81 (6)	O3 ^v —Ni2—O7	91.14 (6)
O1—Ni1—N6 ⁱⁱ	95.72 (7)	O3 ^v —Ni2—N1	94.04 (7)
O1—Ni1—N6 ⁱⁱⁱ	97.87 (7)	O5—Ni2—O2 ^{iv}	94.45 (6)
O1 ⁱ —Ni1—N6 ⁱⁱ	97.88 (7)	O5—Ni2—O6	62.72 (6)
O1 ⁱ —Ni1—N6 ⁱⁱⁱ	95.72 (7)	O7—Ni2—O2 ^{iv}	175.86 (6)
O2 ⁱ —Ni1—O2	88.53 (8)	07—Ni2—O5	87.95 (6)
N6 ⁱⁱ —Ni1—O2	156.61 (7)	07—Ni2—O6	84.52 (6)
N6 ⁱⁱⁱ —Ni1—O2 ⁱ	156.61 (7)	07—Ni2—N1	94.98 (7)
N6 ⁱⁱⁱ —Ni1—O2	91.85 (7)	N1—Ni2—O2 ^{iv}	87.99 (7)
N6 ⁱⁱ —Ni1—O2 ⁱ	91.85 (7)	N1—Ni2—O5	98.95 (7)
N6 ⁱⁱ —Ni1—N6 ⁱⁱⁱ	96.89 (11)	N1—Ni2—O6	161.67 (7)

$n_{\rm Fe}:n_{\rm Ni}$ (addition)	0.5:1	1:1	2:1	3:1	4:1	5:1	6:1
Fe ⁵⁷ (ug/L)	34.10	50.84	73.28	75.53	96.76	105.83	110.48
Ni ⁵⁸ (ug/L)	130.88	104.17	80.42	77.67	67.43	53.58	56.75
$n_{\rm Fe}$: $n_{\rm Ni}$ (ICP-MS)	0.26:1.00	0.49:1.00	0.75:1.00	0.99:1.00	1.46:1.00	2.01:1.00	1.98:1.00
$x = n_{\rm Fe}/(n_{\rm Fe} + n_{\rm Ni})$ (ICP-MS)	0.21	0.33	0.43	0.5	0.6	0.67	0.67
Ni _{3(1-x)} Fe _{3x} -MOF	Ni _{2.4} Fe _{0.6} -MOF	Ni ₂ Fe ₁ -MOF	Ni _{1.8} Fe _{1.2} -MOF	Ni _{1.5} Fe _{1.5} -MOF	Ni _{1.2} Fe _{1.8} -MOF	Ni ₁ Fe ₂ -MOF	Ni ₁ Fe ₂ -MOF

Table S3. Determining the metal content of $Ni_{3(1-x)}Fe_{3x}$ -MOF by ICP-MS.

Catalysts	Overpotential (mV)	Tafel slope	Substrate	Binder	Reference
	$(at J=10 \text{ mA cm}^{-2})$	(mV dec ⁻¹)			
NiMOF	369	47	GC	Nafion	
1113-11101	266	158	Ni foam	Null	
Ni-FoMOF	330	46	GC	Nafion	This work
M2rep-Mor	225	92	Ni foam	Null	THIS WORK
Ni. FoMOF	283	41	GC	Nafion	
	186	98	Ni foam	Null	
4.3%-NiFe-MOF	210 (at <i>J</i> =200 mA cm ⁻²)	68	Ni foam	Null	Nat. Energy 2019, 4, 115.
NCEMOE	190	49	Ni foam	Nul	Adv. Funct. Mater. 2018, 28, 1802120
NCF MOF	320	NA	GC	Nafion	Auv. Funct. Mater. 2010, 20, 1602127.
EarD Co NS	211	43	Ni foam	Null	Anore Chem Int Ed 2019 57 4622
	282	59	GC	Nafion	Angew. Chem. Int. Ed. 2016, 57, 4052.
	283	43	GC	Nafion	
Fe ₃ -Co ₂	225	48	Ni foam	Nafion	J.Am. Chem. Soc. 2017, 139, 1778.
	237	79	Cu foam	Nafion	
NiFe-MOF	240	34	Ni foam	Null	Nat. Commun. 2017, 8, 15341.
CTGU-10c2	240	58	GC	Nafion	Angew. Chem. Int. Ed. 2019, 58, 4227.
Pt3.2%@NiNSMOFs	298	107	RRDE	Nafion	Appl. Catal. B-Environ. 2019, 245, 389.
NNU-23	365	81.2	CC	Nafion	Angew. Chem. Int. Ed. 2018, 57, 9660.
Fe ₂ Co-MOF	402	81.2	GC	Nafion	Inorg. Chem. 2020, 59, 6078.
Ti ₃ C ₂ T _x -CoBDC	410	48.2	GC	Nafion	ACS Nano, 2017, 11, 5800.
MAF-X27-OH	461	66	GC	Nafion	J. Am. Chem. Soc. 2016, 138, 8336
Co-WOC-1	390 (at J=1 mA cm ⁻²)	128	GC	Nafion	Angew. Chem. Int. Ed. 2016, 55, 2425.
Co-ZIF-9	510 (at J=1 mA cm ⁻²)	93	FTO glass	Nafion	Nanoscale 2014 , 6, 9930-9934.
IrO ₂ /C(52 wt%)	310	97	Cu foil	Null	J. Am. Chem. Soc. 2014, 136, 13925.
RuO ₂	320	62	GC	Nafion	Angew. Chem. Int. Ed. 2019, 58, 4227.

Table S4. Comparison	of the OER	activities	of MOFs in	0.1 M k	KOH solution.
----------------------	------------	------------	------------	---------	---------------

Catalysts	Overpotential (mV) (at $J=10 \text{ mA cm}^{-2}$)	Tafel slope (mV dec ⁻¹)	Substrate	Binder	Reference
N: MOE	537	133	GC	Nafion	
	229	99	Ni foam	Null	
Ni ₂ Fe ₁ -MOF –	484	131	GC	Nafion	This work
	203	80	Ni foam	Null	This work
	373	107	GC	Nafion	
	155	71	Ni foam	Null	
NCEMOE	110	114	Ni foam	Null	1 to France Madam 2018 28 1802120
NCF MOF	270	NA	GC	Nafion	Aav. Funci. Mater. 2018, 28, 1802129.
HUST-200	131	51	GC	Nafion	ACS Appl. Mater. Interfaces 2018, 10, 31498.
NiFe-MOF	134	NA	Ni foam	Null	Nat. Commun. 2017, 8, 15341.
Fe ₂ Zn-MOF	221	174	GC	Nafion	Inorg. Chem. 2020, 59, 6078.
IrO ₂ /C(20 wt%)	122	252.6	GC	Nafion	Inorg. Chem. 2020, 59, 6078.

Table S5. Comparison of the HER activities of MOFs in 0.1 M KOH solution.

	Eonset	$E_{1/2}$	$J_{ m lim}$	Electron transfers	D.C.
Catalysts	(V vs RHE)	(V vs RHE)	(mA cm ⁻²)	Number (n)	Keterence
Ni ₃ -MOF	0.792	0.651	-3.42	2.49	
Ni ₂ Fe ₁ -MOF	0.795	0.663	-3.99	3.82	This work
Ni ₁ Fe ₂ -MOF	0.802	0.676	-5.02	3.96	
(G-dye-FeP) _n MOF	0.93	0.78	-6.3	3.82	J.Am. Chem. Soc. 2012, 134, 6707.
4.3%-NiFe-MOF	0.92	0.83	-5.2	3.8	Nat. Energy 2019, 4, 115.
PcCu-O ₈ -Co/CNT	0.86	0.83	-5.3	3.93	Angew.Chem. Int.Ed. 2019, 58, 10677.
MCCF/NiMn-MOFs	0.85	0.73	-5.6	3.86	Angew. Chem. Int. Ed. 2020, 59, 18234.
PCN-226(Co)	0.83	0.75	-2.9	3.3	J.Am. Chem. Soc. 2020,142, 15386.
[Ni ₃ (tha) ₂]	0.82	0.67	-2.5	2.25	Nat. Commun. 2016, 7, 10942.
Ni/Co-MOF	0.76	0.62	-4.5	3.7	Nano Lett. 2017, 9, 43.
Co-Al-PMOF	0.75	0.55	-0.6	2.9	Chem. Commun 2017, 53, 6496.
HKUST-1	0.71	0.56	-4.9	1.74	Angew. Chem. Int. Ed. 2016, 55, 15301.
(Fe-P) _n MOF	0.7	0.57	-2.6	1.93	J.Am. Chem. Soc. 2012, 134, 6707.
MIL-100(Fe)	0.7	0.59	-3.8	2.1	Chin. J. Catal. 2014, 35, 185.

Table S6 Comparison of the ORR activities of MOFs in in 0.1 M KOH solution.

Table S7. The value of electron transfer numbers of Ni_3 -MOF@GC, Ni_2Fe_1 -MOF@GC, and Ni_1Fe_2 -MOF@GC in O_2 -saturated 0.1 M KOH solution.

Sample	Ni ₃ -MOF	Ni ₂ Fe ₁ -MOF	Ni ₁ Fe ₂ -MOF
Electron Transfer Numbers	2.49	3.82	3.96

Table S8. Comparison of the ΔE ($\Delta E = E_{OER} \Box E_{1/2}$) activities of MOFs and recently reported active catalysts.

Catalyst	<i>E_{ORR}</i> (V) (Half-wave Potential)	$E_{OER}(V)$ (at J=10 mA cm ⁻²)	$\Delta E = E_{ORR} - E_{OER} (\mathbf{V})$	Reference
Ni ₃ -MOF	0.651	1.599	0.948	
Ni ₂ Fe ₁ -MOF	0.663	1.56	0.897	This work
Ni ₁ Fe ₂ -MOF	0.676	1.513	0.837	
4.3%-NiFe-MOF	0.83	1.53 (at <i>J</i> =2000mA cm ⁻²)	0.7	Nat. Energy, 2019, 4, 115.
MCCF/NiMn-MOFs	0.73	1.51	0.78	Angew. Chem. Int. Ed. 2020 , 59, 18234.

Catalysts	Water splitting potential (V) @10mA cm ⁻²	Overpotential (mV) OER @10mA cm ⁻²	Overpotential (mV) HER @10mA cm ⁻²	Substrate	Binder	Reference
Ni ₃ -MOF	1.675	266	229			
Ni ₂ Fe ₁ -MOF	1.631	225	203	Ni foam	Null	
Ni ₁ Fe ₂ -MOF	1.54	186	155	-		This work
Pt/C-RuO ₂	1.597	427	111	Ni foam	Null	
Ni/Fe-MOF	1.55	240	134	Ni foam	Null	<i>Nat. Commun.</i> 2017, 8, 15341.
NiFe-MS/MOF	1.61 (at <i>J</i> =50 mA cm ⁻²)	230 (at <i>J</i> =50mA cm ⁻²)	156 (at <i>J</i> =50mA cm ⁻²)	Ni foam	Null	<i>Adv.Sci.</i> 2020, 7, 2001965.
MFN-MOFs (2:1)	1.495	235 (at $J=50$ mA cm ⁻²)	79	Ni foam	Null	Nano Energy 2019, 5 7, 1.
D-Ni-MOF	1.5	219	101	Ni foam	Null	Small 2020, 16, 1906564.
NFN-MOF	1.56	240	87	Ni foam	Null	<i>Adv. Energy Mater.</i> 2018, 1801065.
FeNi(BDC)(DMF,F)	1.58	227 (at <i>J</i> =60mA cm ⁻²)	234 (at <i>J</i> =60mA cm ⁻²)	Ni foam	Null	Applied Catalysis B: Environmental . 2019, 258, 118023.

Table S9. Comparison of the water splitting activities of MOFs.

Table S10	. Comparison	of the	trifunctional	activities	of MOFs	and	recently	reported
active cata	lysts in 0.1M	KOH s	olution.					

Catalysts	Overpotential (mV)	Overpotential (mV)	$E_{1/2}$ (V vs RHE) ORR	Reference
	OER@10mA cm ⁻²	HER@10mA cm ⁻²		Kelelence
Ni ₃ -MOF	369	537	0.651	
Ni ₂ Fe ₁ -MOF	330	484	0.663	This work
Ni ₃ Fe ₂ -MOF	283	373	0.676	
P-3G	320	230	0.82	J. Mater. Chem. A. 2019, 7, 2048.
FeCo/Co ₂ P@NPCF	330	260	0.79	Adv. Energy. Mater. 2020 , 10, 1903854.
Fe ₃ C-Co/NC	340	238	0.885	Adv. Energy Mater. 2019 , 29, 1901949.
GH-BGQD2	370	130	0.87	Adv. Energy Mater. 2019, 9, 1900945.
PPy/FeTCPP/Co	380	240	0.86	Adv. Funct. Mater. 2017, 27, 1606497.
G@N-MoS ₂	390	243	0.716	Adv. Mater. 2018 , 30, 1705110.
Co-CoO/N-rGO	390	330	0.78	Adv. Funct. Mater. 2015, 25, 5799.
Co/CoO@Co-N-C-800	392	413	0.787	Chem. Commun. 2016 , 52, 5946.
A-PBCCF-H	410	224	0.76	Nano Energy 2017 , <i>32</i> , 247.
SHG	410	310	0.87	Adv. Mater. 2017 , 29, 1604942.
CoO@Co/N-rGO	420	237	0.81	J. Mater. Chem. A 2017, 5, 5865.
Fe-N ₄ SAs/NPC	430	202	0.885	Angew. Chem. Int. Ed. 2018 , 57, 8614.
Co-Co ₉ S ₈ @SNCNTs- 900	450	240	0.81	Nano Energy 2019 , 56, 724–732.
C ₆₀ -SWCNT ₁₅	460	380	0.84	J. Am. Chem. Soc. 2019, 141, 11658.
GO-PANi-FP	560	520	0.72	Angew. Chem. Int. Ed. 2016 , 55, 13296.
GO-PANi31-FP	590	520	0.72	Angew. Chem. 2016, 128, 13490.