Electronic Supporting Information

Minimization of Ion Transport Resistance: Diblock Copolymer Micelles Derived Hierarchical Pores Arm Nitrogen-Doped Carbon Spheres for Superior Rate and Power Zn-Ion Capacitors

Jun Huang, ${ }^{a}$ Li Wang, ${ }^{a}$ Zhongyou Peng, ${ }^{a}$ Mengke Peng, ${ }^{a}$ Longbin Li, ${ }^{a}$ Xiannong Tang, ${ }^{a}$ Yazhou Xu, ${ }^{\text {a }}$ Licheng Tan, ${ }^{a}$ Kai Yuan, ${ }^{\text {a* }}$ and Yiwang Chen ${ }^{\text {a,b* }}$
${ }^{\text {a }}$ College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
${ }^{\mathrm{b}}$ Institute of Advanced Scientific Research (iASR), Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China.

Corresponding Author

*Dr. Kai Yuan E-mail: kai.yuan@ncu.edu.cn.

* Dr. Yiwang Chen E-mail: ywchen@ncu.edu.cn.

Experimental Section

Chemicals. Dopamine hydrochloride (DA) was purchased from Sigma Aldrich. Amphiphilic block copolymer, polystyrene-b-poly(ethylene oxide) $\left(\mathrm{PS}_{62}-b-\mathrm{PEO}_{119}\right)$ was purchased from Xi'an Ruixi Biological Technology Co., Ltd. All of chemicals were of analytical grade and used without further purification.

Synthesis of nitrogen-doped hierarchically porous carbon spheres (N-HPCSs). The N -HPCSs were synthesized by controlled polymerization of DA and $\mathrm{PS}_{62}-b-\mathrm{PEO}_{119}$. First, 200 mg of DA was dissolved in the mixed solution (12 mL) of ethanol and deionized water (with volume ratio of 1:2). Then, the above solution poured into 4 mL of THF containing 30 mg of $\mathrm{PS}_{62}-b-\mathrm{PEO}_{119}$ under mild stirring at room temperature. After 1 hour, 0.5 mL of ammonia aqueous solution $\left(\mathrm{NH}_{4} \mathrm{OH}, 28-30 \%\right)$ was injected to induce the self-polymerization of DA and the colour of the solution became brown. After continuous reaction for 20 hours at room temperature, $\mathrm{PDA}^{2} / \mathrm{PS}_{62}-b-\mathrm{PEO}_{119}$ composite spheres were obtained by centrifugation and washed with mixed solution of ethanol and deionized water for several times. For carbonization, the $\mathrm{PDA}^{2} / \mathrm{PS}_{62}-b-$ PEO_{119} composite spheres were pre-heated at $350{ }^{\circ} \mathrm{C}$ for 3 hours and finally heated at $800^{\circ} \mathrm{C}$ for 2 hours under nitrogen atmospheres with a heating rate of $1^{\circ} \mathrm{C} \mathrm{min}^{-1}$. Finally, N-HPCSs with the average particle size of $c a .250 \mathrm{~nm}$ were obtained. The N -doped carbon spheres ($\mathrm{N}-\mathrm{CSs}$) were prepared by the same method with N -HPCSs except for the absence of $\mathrm{PS}_{62}-b-\mathrm{PEO}_{119}$.

Materials Characterization. The morphology and structure features of the samples were investigated by a field-emission scanning microscope (JEOL JSM-6700F, 15 keV), and a field-emission transmission electron microscope (JEOL JEM-2100F, 200 keV). HAADF-STEM characterization was performed on a field emission transition electron microscope (JEM-ARM200F, 200 kV) equipped with double spherical aberration correctors for the condenser lens and objective lens. The crystalline structure was studied on a Bruker D8-A25 diffractometer with $\mathrm{Cu} \mathrm{K} \alpha$ radiation ($\lambda=1.5406 \AA$). The elemental composition and chemical state of the samples were investgated by XPS (Kratos Axis Ultra Dld). The surface characteristics of the samples were studied by gas physisorption at 77 K on an automated apparatus (Micromeritics, ASAP 2010). Thermogravimetric (TG) analysis measurements were carried out using a SDT Q600 instrument in a temperature range of room temperature to $1000^{\circ} \mathrm{C}$ at a heating rate of $10{ }^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$ under N_{2} flow. The surface area of the samples were obtained by N_{2} adsorption/desorption isotherms at 77 K that were conducted on a Quantachrome Autosorb-iQ instrument. In addition, to conduct ex situ tests including SEM, TEM, XRD, and XPS, the cathodes were charged/discharged to specifc potentials, washed with distilled water to get rid of electrolyte residual and dried overnight in a vacuum oven before test.

Electrochemical Measurements. The electrochemical performance was tested in cointype cells, which comprised the $\mathrm{N}-\mathrm{CS}$ and $\mathrm{N}-\mathrm{HPCS}$ electrode as cathodes, the commercial Zn foil as anode and $2 \mathrm{M} \mathrm{ZnSO}_{4}$ aqueous solution as electrolyte. The
separator was purchased from NKK (Nippon Kodoshi Corporation). N-CS and NHPCS electrodes were prepared by mixing $\mathrm{N}-\mathrm{CS}$ and $\mathrm{N}-\mathrm{HPCS}$ with carbon black (Sigma-Aldrich) and poly(vinylidene fluoride) binder (Sigma-Aldrich) at a weight ratio of 8:1:1 in 1-methyl-2-pyrrolidinone (NMP, Sigma-Aldrich). The mixture was coated on Ti net, and then dried overnight at $60^{\circ} \mathrm{C}$. The total mass loadings of the $\mathrm{N}-\mathrm{CS}$ and N -HPCS electrodes are 1.0 to $1.2 \mathrm{mg} \mathrm{cm}^{-2}$, while the counter electrode (Zn foil) is 15 $\mathrm{mg} \mathrm{cm}^{-2}$ with the purpose of excluding the effect of anode fading. The CHI 760E workstation was used to collect cyclic voltammogram, electrochemical impedance spectroscopy, and galvanostatic charge/discharge curves. The long term cycling stability was examined by a CT3001A battery tester (Wuhan LAND electronics Co., Ltd., China). The specific capacity $C\left(\mathrm{~mA} \mathrm{~h} \mathrm{~g}^{-1}\right)$, mass energy density $E\left(\mathrm{~Wh} \mathrm{~kg}^{-1}\right)$ and mass power density $P\left(\mathrm{~kW} \mathrm{~kg}^{-1}\right)$ was calculated from galvanostatic charge/discharge curves of the devices using the following equations:
$C=2 I \int V d t / 3.6 \mathrm{Vm}$
$E=I \int V d t / 3.6 m$
$P=3600 E / t$
where $I(\mathrm{~A}), t(\mathrm{~s}), V(\mathrm{~V})$ and $m(\mathrm{~g})$ represent the discharge current (A), the discharge time, the voltage window, and the mass of active material in cathode, respectively.

The contribution from diffusion-controlled process and surface reaction of anode and cathode can be evaluated by using CV curves. The relationship between current (I) and scan rate (v) can be written as:

$$
\begin{equation*}
I=a v^{b} \tag{4}
\end{equation*}
$$

where a and b are constant can be obtained from $\log v$ versus $\log I$ plots. When $b=0.5$ indicates an ideal diffusion-dominated process and when $b=1.0$ indicates surfacedetermined capacitive-controlled behavior. Furthermore, the capacitive contribution to the total current can be differentiated quantitively by using the following equations:
$I(V)=k_{1} v+k_{2} v^{\frac{1}{2}}$
$\frac{I(V)}{v^{\frac{1}{2}}}=k_{1} v^{\frac{1}{2}}+k_{2}$
where I is the current density at a voltage $(\mathrm{V}), v$ is the scan rate $(\mathrm{mV} / \mathrm{s}), k_{1}$ and k_{2} can be obtained from the slope and intercept, respectively. Where $k_{1} v$ can be attributed to the current from surface capacitance contribution, while $k_{2} v^{1 / 2}$ is indexed to the diffusion process.

The electrochemically active surface area (ECSA) was measured by double layer capacitance $\left(C_{d l}\right)$ in a non-Faradaic potential range of 1.3-1.4 V at different scan rates of $2-10 \mathrm{mV} \mathrm{s}^{-1}$. The ECSA was calculated by the following equation:
$E C S A=C_{d l} / C_{d l(\text { smooth })}$
where $C_{d l(s m o o t h)}$ is the double layer capacitance value of a smooth surface. The value of $C_{d l(\text { smooth })}$ is $0.04 \mathrm{mF} \mathrm{cm}^{-2}$ in this calculation.

The real capacitance $\left(C^{\prime}(\omega)\right)$ and imaginary capacitance $\left(C^{\prime \prime}(\omega)\right)$ from EIS data were calculated by the following equation:

$$
\begin{equation*}
C(\omega)=C^{\prime}(\omega)+j C^{\prime \prime}(\omega) \tag{8}
\end{equation*}
$$

where $C^{\prime}(\omega)$ is the real part of the capacitance $C(\omega) . C^{\prime \prime}(\omega)$ is the imaginary part of the capacitance $C(\omega)$.

The diffusion coefficient of the Zn^{2+} ions can be calculated by Fick's second law:

$$
\begin{equation*}
D=R^{2} T^{2} / 2 A^{2} n^{4} F^{4} c^{2} \sigma^{2} \tag{9}
\end{equation*}
$$

where R is the ideal gas constant; T is the applied thermodynamics temperature; F is the Faraday constant; n is the valence; c is the concentration of the Zn^{2+} ions; A is the area of electrode; σ is called the Warburg coefficient.
(a)

(b)

Figure S1. SEM images of N-CS.
(a)

(b)

Figure S2. TEM images of N-CS.
(a)

(b)

Figure S3. SEM images of PDA/PS- b-PEO composite spheres.

Figure S4. TEM images of PDA/PS- $b-\mathrm{PEO}$ composite spheres.
(a)

(b)

Figure S5. SEM images of N-HPCS.

Figure S6. TEM images of N-HPCS.

Figure S7. (a) XPS spectra and (b) corresponding element contents of $\mathrm{N}-\mathrm{CS}$ and N -
HPCS samples.

N-HPCS

N-CS

Figure S8. Contact angles of a water droplet on N-CS and N-HPCS samples.

Figure S9. (a) CV and (b) GCD curves of N-CS ZIC.

Figure S10. CV curves of (a) N-CS and (b) N-HPCS based ZICs in a non-Faradaic potential range of 1.3-1.4 V at different scan rates.

Figure S11. (a) Nyquist plots of N-CS and N-HPCS based symmetric supercapacitors.
(b) CV and (c) GCD curves of N-CS supercapacitors. (d) CV and (e) GCD curves of N-MCS supercapacitors. (f) Specific capacities of N-CS and N-HPCS based symmetric supercapacitors at different current densities.

Figure S12. CV curves of (a) N-HPCS ZIC and (b) N-HPCS SC at different scan rates.

Figure S13. Long-term cycle test of N-CS ZIC at $5 \mathrm{~A} \mathrm{~g}^{-1}$ for 50000 cycles.

Figure S14. Leakage current curves of (a) N-CS ZIC and (b) N-HPCS SC after selfdischarging for 100 h .

Figure S15. CV curves of single, two-in-series/parallel N-HPCS ZICs at $50 \mathrm{mV} \mathrm{s}^{-1}$.

Figure S16. SEM images of Zn foil anode at different discharge-charge states: (a)

$$
\text { state } A,(b) \text { state } B,(c) \text { state } C,(d) \text { state } D \text {, and (e) state } E \text {. }
$$

Figure S17. XRD patterns of Zn foil anodes at different discharge-charge states.

Figure S18. SEM images of N-HPCS cathode at different discharge-charge states: (a) state A, (b) state B, (c) state C, (d) state D, and (e) state E.

Figure S19. XRD patterns of N-HPCS cathodes at different discharge-charge states.

Figure S20. Raman spectra for N-HPCS cathodes at different discharge-charge states.

Figure S21. C 1s XPS spectra of N-CS and N-HPCS at 0 V .

Figure S22. O 1s XPS spectra of N-CS and N-HPCS at 0 V .

Figure S23. SEM image of the fully discharged N-HPCS electrode. The pink arrows indicate the locations of $\mathrm{Zn}_{4} \mathrm{SO}_{4}(\mathrm{OH})_{6} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ nanosheets.

