Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supporting Information

for

Insights into oxygen activation on metal clusters for catalyst design

Li Xin Chen,^{1,2} Zi Wen,¹ Zhi Wen Chen,^{*2} Chandra Veer Singh,^{*2,3} Qing Jiang^{*1}

¹Key Laboratory of Automobile Materials, Ministry of Education, and School of

Materials Science and Engineering, Jilin University, Changchun 130022, China

²Department of Materials Science and Engineering, University of Toronto, 184

College Street, Suite 140, Toronto, ON M5S 3E4, Canada.

³Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada.

^{*} Correspondence and requests for materials should be addressed to Z. W. C. (e-mail: zhiw.chen@utoronto.ca), C. V. S. (e-mail: chandraveer.singh@utoronto.ca), or Q. J. (e-mail: jiangq@jlu.edu.cn).

Table S1. Calculated data for the adsorption of O_2 , including active sites (bri- M_2 site;

tri-M₃ site; squ-M₄ fragment), bond lengths of O-O (l_{O-O} , in Å), the E_{O-O} value (eV), the

bulk metals	active site	l _{O-O}	E _{O-O}	E _{ad-O2}	E _{sum}
Au (1 0 1)	bri-Au ₂	1.30	6.18	0.33	6.51
Au(111)	tri-Au ₃	1.24	6.69	0.23	6.92
Au (1 0 0)	squ-Au ₄	1.41	4.71	0.26	4.97
Ag (1 0 1)	bri-Ag ₂	1.31	6.05	0.52	6.57
Ag (1 1 1)	tri-Ag ₃	1.37	5.28	0.53	5.81
Ag (1 0 0)	squ-Ag ₄	1.43	4.42	0.73	5.15
Cu (1 0 1)	bri-Cu ₂	1.37	5.29	1.23	6.52
Cu (1 1 1)	tri-Cu ₃	1.46	3.93	0.87	4.80
Cu (1 0 0)	squ-Cu ₄	1.51	3.43	1.83	5.26
Pd (1 0 1)	bri-Pd ₂	1.34	5.61	1.29	6.90
Pd (1 1 1)	tri-Pd ₃	1.36	5.38	0.81	6.19
Pd (1 0 0)	squ-Pd ₄	1.42	4.57	1.32	5.89

 E_{ad-O2} value (eV) and the E_{sum} value (eV).

Table S2. Calculated reaction energy and barrier of CO oxidation on squ- M_4 fragment

Methods	$O_2^*CO^* \rightarrow OO$)CO*	$OOCO^* \rightarrow O^* + CO_2$	
	Reaction energy (eV)	Barrier (eV)	Reaction energy (eV)	Barrier (eV)
HSE06	-0.57	0.14	-2.86	0.35
GGA+PBE	-0.44	0.16	-2.75	0.30
Free energy	-0.30	0.19	-2.83	0.31

of Ag_{38} cluster with different calculation methods.

Figure S1. Different active sites of Cu, Pd and Au clusters and their corresponding HOMOs. The yellow balls represent active sites.

Figure S2. Spin-polarized local density of states (LDOS) of the O atom and the adjacent Cu atom are described. Red and blue lines represent p orbitals of O atom and d orbitals of Cu atom. The vertical black lines denote the Fermi level and the corresponding adsorption structures are shown in the right corner.

Figure S3. Spin-polarized local density of states (LDOS) of the O atom and the adjacent Pd atom are described. Red and blue lines represent p orbitals of O atom and d orbitals of Pd atom. The vertical black lines denote the Fermi level. Their corresponding adsorption structures are shown in the right corner.

Figure S4. Spin-polarized local density of states (LDOS) of the O atom and the adjacent Au atom are described. Red and blue lines represent p orbitals of O atom and d orbitals of Au atom. The vertical black lines denote the Fermi level. Their corresponding adsorption structures are shown in the right corner.

Figure S5. Different adsorption structures (bri-Ag₂ site, tri-Ag₃ site, squ-Ag₄ lattice) of

O₂ on Ag₃₈ cluster.

Figure S6. Reaction processes of $O_2^* = O^* + O^*$ on squ-Ag₄ lattice and corresponding energy barrier.

Reaction Path

Figure S7. Reaction processes of $O^* + CO = CO_2$ on tri-Ag₃ site and squ-Ag₄ lattice and their corresponding energy barriers.

Reaction Path

Reaction Path

Figure S8. CO oxidation reaction processes on tri-Ag₃ site of Ag_{13} cluster and their corresponding energy barriers.

Reaction Path

Figure S9. CO oxidation reaction processes on tri-Ag₆ face of Ag_{55} cluster and their corresponding energy barriers.

Figure S10. Adsorption energy of O_2 on Cu(111) with considering the different U values.

