Facile synthesis of a highly effective g- C_3N_4 -based catalyst for advanced

oxidative degradation of organic pollutants

Zhujian Huang^{*,a,b}, Minxian Shen^a, Junhong Liu^a, Jiaer Ye^c, Tewodros Asefa^{*,b}

- a. Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan St, Guangzhou, 510642, P. R. China
- b. Department of Chemistry and Chemical Biology & Department of Chemical and Biochemical Engineering, Rutgers, 610 Taylor Road, The State University of New Jersey, Piscataway, NJ 08854, USA
- c. Department of Chemistry, University College London, 20 Gordon St, London WC1H 0AJ, United Kingdom

*Corresponding authors' E-mails: zjhuang@scau.edu.cn (Z. Huang); tasefa@chem.rutgers.edu (T. Asefa).

Fig. S1. SEM images of (a) $Fe-C_3N_4$ and (b) $Mn-C_3N_4$.

Fig. S2. The Pseudo-first order kinetic curves of degradation of RhB by persulfate activation.

Fig. S3. The Pseudo-first order kinetic curves of degradation of RhB via Fenton reaction catalyzed by FeMn-C₃N₄ and the corresponding control materials (Mn-C₃N₄, Fe-C₃N₄ and g-C₃N₄).

Fig. S4. The catalytic activity of FeMn-C₃N₄/PMS system for removing RhB (in %) in the presence of different scavengers (MeOH or methanol, which is used to quench SO₄⁻⁻ and ·OH; TBA or *tert*-butyl alcohol, which is used to quench ·OH; and *L*-histidine, which is used to quench ¹O₂). The one in absence of quenching agents (denoted Orginal) is also included for comparison.

Fig. S5. XPS spectra of peaks associated with (a) Fe 2p and (b) Mn 2p in FeMn-C₃N₄/PMS after it is used persulfate activation reaction.

Fig. S6. XPS spectra of peaks associated with (a) Fe 2p and (b) Mn 2p in FeMn-C₃N₄/H₂O₂ after it is used in Fenton reaction.

Fig. S7. XPS spectra of peaks associated with (a) Fe 2p and (b) Mn 2p in FeMn- C_3N_4 after it is used visible-light photocatalytic reaction.

Samples and Reactions	C ₃ N ₄	Fe-C₃N₄	Mn-C ₃ N ₄	FeMn-C₃N₄
Activation of PMS	9.55	48.97	79.21	76.05
Fenton-like reaction	1.72	1.50	3.85	13.70
Visible-light	4.92	12.30	4.42	10.80
photocatalytic test				

Table S1. The kinetic parameters (K_1 , 10⁻³ min⁻¹) of persulfate (PMS) activation, heterogeneous Fenton reaction and photocatalysis as catalyzed by the different C₃N₄-based materials studied.

Table S2. Comparison of the catalytic performance of $FeMn-C_3N_4$ in the Fenton-like reaction to degrade different compounds with respect to those of different heterogeneous and solid catalysts reported in the literature for the same reaction.

Heterogeneous Catalysts	Reaction Type	Removal Efficiency	Experimental conditions	References
γ-Fe ₂ O ₃ /Mn ₃ O ₄	Persulfate activation	Removal rate of RhB = 95.6%	Persulfate concentration = 50 mg/L; catalyst dosage = 50 mg/L; initial pH = 5.1	(Ma, et al. 2019)
Porous Mn/Fe ₃ O ₄	PMS activation	Removal rate of bisphenol A = 87%	PMS concentration = 2 mmol/L; catalyst dosage = 0.2 g/L; initial pH = 3	(Du, et al. 2019)
g- C ₃ N ₄ /MnFe ₂ O ₄	PMS activation	Removal rate of triclosan (TCS) = 95.9%	PMS concentration = 0.5 mmol/L; catalyst dosage = 0.5 g/L; TCS = 9 mg/L; initial pH = 11	(Wang, et al. 2019)
Mn doped g-C₃N₄	PMS activation	Removal rate of acetaminophen (ACT) = 100%	PMS concentration = 0.8 g/L; catalyst dosage = 0.2 g/L; ACT = 20 mg/L; initial pH = 6.5	(Fan, et al. 2019)

FeMn-C₃N₄	PMS activation	Removal rate of RhB = 98.20%	PMS concentration = 50 mg/L; catalyst dosage = 0.5 g/L; pH = 6.80	This paper
Fe doped g- C ₃ N ₄	Fenton-like reaction	Oxidation of RhB = 80%	H ₂ O ₂ concentration = 200 mmol/L; catalyst dosage = 0.5 g/L; initial pH = 6.5	(Bicalho, et al. 2017)
FeMn-C₃N₄	Fenton-like reaction	Removal rate of RhB = 81.87%	H ₂ O ₂ concentration = 21.76 mmol/L; catalyst dosage = 0.5 g/L; initial pH = 3;	This paper
Fe/C₃N₄	Photocatalysis	Removal rate of RhB = 79%	catalyst dosage = 0.4 g/L; pH=3.5; light source: 350 W Metal halide-Xenon lamp ; with addiction of 3 mmol/L persulfate; reaction time: 40 min	(Heidarpour, et al. 2020)
g-C ₃ N ₄ -Mn-H	Photocatalysis	Removal rate of RhB = 51.4%	catalyst dosage = 0.5 g/L; light source: 300 W Xe arc lamp; reaction time: 60 min	(Wang, et al. 2017)
FeMn-C₃N₄	Photocatalysis	Removal rate of RhB = 94%	pH = 6.80; catalyst dosage = 0.5 g/L; light source: 30 W LED light; reaction time: 210 min	This paper

References

- Bicalho, H., Lopez, J. Binatti, I., Batista, P., Ardisson, J., Resende R., Lorençon, E., Facile synthesis of highly dispersed Fe(II)-doped g-C₃N₄ and its application in Fenton-like catalysis. *Mol. Catal.* 2017, 435, 156-165.
- Du, J., Bao, J., Liu, Y., Kim S. H., Dionysiou, D. D. Facile preparation of porous Mn/Fe₃O₄ cubes as peroxymonosulfate activating catalyst for effective bisphenol A degradation. *Chem. Eng. J.* **2019**, *376*, 119193.

- Heidarpour, H., Padervand, M., Soltanieh M., Vossoughi, M., Enhanced decolorization of rhodamine
 B solution through simultaneous photocatalysis and persulfate activation over Fe/C₃N₄
 photocatalyst. *Chem. Eng. Res. Des.* 2020, 153, 709-720.
- Fan, J., Qin, H., Jiang, S. Mn-doped g-C₃N₄ composite to activate peroxymonosulfate for acetaminophen degradation: The role of superoxide anion and singlet oxygen. *Chem. Eng. J.* 2019, 359, 723-732.
- Ma, Q., Zhang, X., Guo, R., Zhang, H., Cheng, Q., Xie M., Cheng, X. Persulfate activation by magnetic γ-Fe₂O₃/Mn₃O₄ nanocomposites for degradation of organic pollutants. *Sep. Purif. Technol.* 2019, *210*, 335-342.
- Wang, J.C., Cui, C.X., Li, Y., Liu, L., Zhang Y.P., Shi, W. Porous Mn doped g-C₃N₄ photocatalysts for enhanced synergetic degradation under visible-light illumination, *J. Hazard. Mater.* 2019, 339, 43-53.
- Wang, J., Yue, M., Han, Y., Xu, X., Yue, Q. Xu, S. Highly-efficient degradation of triclosan attributed to peroxymonosulfate activation by heterogeneous catalyst g-C₃N₄/MnFe₂O₄. *Chem. Eng. J.* **2020**, *391*, 123554.