Tungsten Disulfide-reduced GO/CNT Aerogel: A Tuned Interlayer Spacing Anode for Efficient Water Desalination

Sareh Vafakhah ^a, Mohsen Saeedikhani ^b, Shaozhuan Huang ^c, Dong Yan ^a, Zhi Yi Leong ^a, Ye Wang ^d, Lijuan Hou ^d, Lu Guo ^a, ^{*}, Pablo Valdivia y Alvarado ^a, Hui Ying Yang ^a, ^{*}

^a Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372

^b Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576

^c Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central University for Nationalities, Wuhan, Hubei, 430074, China

^d Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China

*Corresponding Author Email: yanghuiying@sutd.edu.sg, lu_guo@sutd.edu.sg

Figure S1, photograph of HCDI set up.

Figure S2, XRD pattern of rGO-CNT.

Figure S3, TGA analysis to determine the amount of WS₂ in WS₂/rGO-CNT composite

In order to calculate the percentage of WS_2 and rGO-CNT in the composite, TGA experiments were performed for both WS_2/rGO -CNT aerogel and pure WS2 as a reference sample. Therefore, the WS_2 content can be calculated using below equation, meaning the residual amount for both samples at 800 °C have the same compositions:

Figure S4, BET nitrogen adsorption-desorption isotherm, a) of rGO-CNT, and b) pure WS₂ powder.

Figure S5, the elemental analysis of WS_2/rGO -CNT with EDS, indicating the atomic ratio of W to S as ~ 1:1.7 (0.3 atomic positions are occupied with oxygen content). The excess peaks are related to the cupper substrate.

Figure S6, the HRTEM image for annealed WS_2/rGO -CNT indicating the interlayer spacing of 0.62 nm between (002) planes.

Figure S7, The C1s spectra for nonannealed WS₂/rGO-CNT.

Figure S8, a) the Cyclic voltammetry of pure WS_2 at different scan rates of 0.6, 1, 2 and 3 mV sec⁻¹, and b) the comparison of pure WS_2 , bare rGO-CNT, and WS_2/rGO -CNT at scan rate of 0.6 mV sec⁻¹.

Figure S9, Desalination results for annealed $WS_2/rGO-CNT$ with total mass loading of 20 mg, the voltage range of -1.4 V to 1.4 V and flow rate of 50 mL/min, a) The TDS pattern at different current densities, and b) the comparison of removal capacity between annealed and nonannealed $WS_2/rGO-CNT$.

Material	CDI mode	Cell vol/Current density	NaCl (mM)	Electrodes mass (mg)	SAC (mg/g)	Energy	Ref
MoS ₂ /CNT	Symmetric CDI-CV	0-0.8 V/-	500	80-120	25	-	21
SnS ₂ @GP	Symmetric CDI-CV	1.2 V/-	8.5	60	30.32	-	22
MoS_2	CDI- CV	1.2 V/-	400		8.81	-	52
TiS ₂ /CNT	HCDI- CV	0.2-0.8 V/-	600	300-330	14	1.2 Wh/L	20
MoS ₂ /GO	MCDI- CV	1.4 V/-	5.13	-	34.2	-	18
MoS ₂ /GO	CDI- CV	1.2 V/-	8.5	-	19.4	-	19
WS ₂ /rGO- CNT	HCDI- CC	1.4 V/25 mA/g	51.3	80	80	55.7 wh/m ³	This work

Table S1, Desalination performances of recent transition Metal Dichalcogenides (TMDs) applied in CDI systems in comparison with the present work.

Table 2, Sodium ion removal results for large scale HCDI device with total electrodes' masses of 80 mg at different current of 10 mA, 3 mA, and 1 mA at synthetic seawater solution with initial concentration of 35 g/L of mixed ions and initial sodium ion concentration of ≈ 8 g/L.

Current (mA)	Salt removal, $\Delta C \text{ (mg/L)}$	Salt removal percentage (%)	Salt removal capacity (mmol/L)
10	190	2.35	8
3	280	3.62	12
1	580	7	25

Figure S10, a) The removal capacity and energy consumption, and b) The percentage of energy recovery at different desorption voltages at 200 mA/g.