Supplementary Information

Surface oxygen vacancies promoted Pt redispersion to single-atom for enhanced photocatalytic hydrogen evolution

Jinmeng Cai,^[a,b,+] Ang Cao,^[c,+] Zhenbin Wang,^[c] Siyu Lu,^[a] Zheng Jiang,^[d] Xi-Yan Dong,^[a]

Xingang Li,*[b] and Shuang-Quan Zang*[a]

^a Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
^b Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science & Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P. R. China
^c Technical University of Denmark, Lyngby DK, 2800, Denmark
^d Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
+ These authors contributed equally to this work.

*Corresponding authors

Email:

xingang_li@tju.edu.cn zangsqzg@zzu.edu.cn

1. Figures

Figure S1. TEM (a) and HRTEM (b) images of Pt-NPs/TiO₂. By using NaBH₄ in aqueous solution to reduce Pt precursor, the obtained reduced Pt tends to aggregate to large nanoparticles. The large particles are composed of primary particles with a diameter of about 3.9 nm.

Figure S2. (a) TEM image of Pt-NCs/TiO₂. (b) Histograms of Pt clusters size distribution of Pt-NCs/TiO₂.

Figure S3. TEM images of the catalysts with Pt loading amount of (a) 0.5 wt.% and

(b) 0.1 wt.% after treated in 10 vol.% H_2/Ar atmosphere at 700 $^\circ C.$

Figure S4. XRD patterns of Pt-NPs/TiO₂, Pt-NCs/TiO₂ and Pt-SAs/TiO₂. New peaks that can be attributed to the rutile TiO_2 phase can not be found, indicating that no phase transition would occur at the treatment temperature in this experiment.

Figure S5. Schematic illustration of the formation of Ti-OH and oxygen vacancy with

the assistance of hydrogen spillover effect.

Figure S6. Pt 4f XPS spectra of the catalysts.

Figure S7. (a) TEM image of Pt-NPs/TiO₂ after the treatment in N_2 atmosphere at 700 °C for 5 h. (b) Histograms of Pt particle size distribution of the catalyst in (a).

Figure S8. (a) Side and (b) top views of anatase $TiO_2(101)$ surface. The red means O atom and the grey means Ti atom.

2. Tables

Samples	B.E. O (eV)		P.A. (Counts)		0 /0
	OL	Оон	\mathbf{O}_{L}	Оон	- 0 _{0H} /0 _L
Pt-NPs/TiO ₂	529.7	531.5	10486	726	0.07
Pt-NCs/TiO ₂	529.8	531.3	8604	4152	0.48
Pt-SAs/TiO ₂	529.8	531.0	9512	4646	0.49

Table S1. Binding energies (B.E.) of O element, and relative peak areas (P.A.) of different surface oxygen species of O 1s.

-			,	
_	Catalyst	Position	E_{ad} (eV)	Bader charge (e)

2.78

0.81

-0.07

+0.66

2cO-2cO bridge

 V_0

Pt/P-TiO₂

Pt/V_O-TiO₂

Table S2. Calculated adsorption energy and bader charge of a single Pt adatom on the pristine (Pt/P-TiO₂) and defective (Pt/V₀-TiO₂) TiO₂(101) surface.