Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Mitigating P2-O2 Transition and Na⁺/Vacancy Ordering in Na_{2/3}Ni_{1/3}Mn_{2/3}O₂ by

Anion/Cation Dual-Doping for Fast and Stable Na⁺ Insertion/Extraction

Qianjiang Mao,^{ab} Yang Yu^a, Junkai Wang,^a Lirong Zheng,^c Zhenya Wang,^a Yunsheng Qiu,^a

Yongmei Hao*b and Xiangfeng Liu*ad

^a Center of Materials Science and Optoelectronics Engineering, College of Materials Science and

Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China

^b School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049,

China

^c Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China

^dCAS Center for Excellence in Topological Quantum Computation, University of Chinese

Academy of Sciences, Beijing 100190, China

* Corresponding author.

E-mail address: liuxf@ucas.ac.cn (X.L.); ymhao@ucas.ac.cn (Y.H.)

Fig. S1 SEM images of $Na_{0.67-x}Ca_xNi_{0.33}Mn_{0.67}O_{2-2x}F_{2x}$ samples (a) x = 0, (b) x = 0.01, (c) x = 0.03 and (d) x = 0.05.

Fig. S2 FIB-cut image of TEM specimen.

Fig. S3 Midpoint voltage of $Na_{0.67-x}Ca_xNi_{0.33}Mn_{0.67}O_{2-2x}F_{2x}$ (x = 0, 0.01, 0.03 and 0.05) at various current densities.

Fig. S4 Cycling performance of $Na_{0.67-x}Ca_xNi_{0.33}Mn_{0.67}O_{2-2x}F_{2x}$ (x = 0, 0.01, 0.03 and 0.05) cycled at 0.2C in the voltage range of 2.0-4.3 V.

Fig. S5 The dQ/dV plots of $Na_{0.67-x}Ca_xNi_{0.33}Mn_{0.67}O_{2-2x}F_{2x}$ (a) x = 0, (b) x = 0.01, (c) x = 0.03 and (d) x = 0.05 at 0.2C.

Fig. S6 XPS spectra of $Na_{0.67-x}Ca_xNi_{0.33}Mn_{0.67}O_{2-2x}F_{2x}$ (x = 0, 0.01, 0.03 and 0.05) powders for (a) Ni 2p, (b) Mn 2p, (c) Ca 2p and (d) F 1s.

Fig. S7 XPS spectra of $Na_{0.67-x}Ca_xNi_{0.33}Mn_{0.67}O_{2-2x}F_{2x}$ (x = 0.03) cathode charged to 4.3 V for (a) Ca 2p and (b) F 1s.

Fig. S8 Comparison of XRD patterns of $Na_{0.67-x}Ca_xNi_{0.33}Mn_{0.67}O_{2-2x}F_{2x}$ (x = 0, 0.01, 0.03 and 0.05) after 100 cycles at 0.2C.

Termed by the Retivera method.							
Site	Х	у	Z	occ.			
Na _f	0	0	0.25	0.3016			
Na _e	0.3333	0.6667	0.75	0.3684			
Ni	0	0	0	0.3260			
Mn	0	0	0	0.6740			
0	0.3333	0.6667	0.0890	1.0000			
a = 2.886(5) Å	c = 11.151(3) Å	$V = 80.45(3) \text{ Å}^3$	Rp = 4.96%	Rwp = 6.55%			

Table S1. Crystallographic parameters of $Na_{0.67-x}Ca_xNi_{0.33}Mn_{0.67}O_{2-2x}F_{2x}$ (x = 0) refined by the Rietveld method.

Table S2. Crystallographic parameters of $Na_{0.67-x}Ca_xNi_{0.33}Mn_{0.67}O_{2-2x}F_{2x}$ (x = 0.03) refined by the Rietveld method.

Termed by the Retivera method:						
Site	Х	у	Z	occ.		
Na _f	0	0	0.25	0.2427		
Na _e	0.3333	0.6667	0.75	0.3981		
Ca _e	0.3333	0.6667	0.75	0.0292		
Ni	0	0	0	0.3204		
Mn	0	0	0	0.6796		
О	0.3333	0.6667	0.0886	0.9400		
F	0.3333	0.6667	0.0886	0.0600		
a = 2.885(3) Å	c = 11.137(5) Å	$V = 80.31(3) Å^3$	Rp = 4.56%	Rwp = 5.74%		

x 0.55 0.07 2 2x 2x		J1	
Material	Voltage window	Capacity retention	Reference
Na _{2/3} Cu _{1/6} Ni _{1/6} Mn _{2/3} O ₂	2.5-4.4 V	97.0%, 30 cycles, 1C	1
$Na_{2/3}Ni_{1/4}Mn_{2/3}Cu_{1/12}O_2$	2.0-4.5 V	89.0%, 50 cycles, 0.05C	2
$Na_{0.67}Ni_{0.25}Mg_{0.05}Mn_{0.7}O_2$	2.0-4.5 V	91.5%, 50 cycles, 200 mA g ⁻¹	3
$Na_{0.67}Mn_{0.65}Ni_{0.2}Co_{0.15}O_2$	2.0-4.3 V	62.0%, 100 cycles, 0.1C	4
$Na_{2/3}Ni_{1/3}Mn_{1/3}Ti_{1/3}O_2$	2.5-4.35 V	83.9%, 500 cycles, 1C	5
Al_2O_3 - $Na_{2/3}[Ni_{1/3}Mn_{2/3}]O_2$	2.5-4.3 V	73.2%, 300 cycles, 0.5C	6
$Na_{0.78}Al_{0.05}Ni_{0.33}Mn_{0.60}O_2$	2.0-4.5 V	83.9%, 50 cycles, 0.1C	7
$Na_{0.67}Fe_{0.20}Ni_{0.15}Mn_{0.65}O_2$	2.0-3.8 V	70.0%, 900 cycles, 1C	8
$Na_{2/3}[Ni_{0.3}Co_{0.1}Mn_{0.6}]O_2$	2.0-4.3 V	79.2%, 50 cycles, 0.1C	9
$Na_{2/3}Ni_{1/3}Mn_{7/12}Fe_{1/12}O_2$	2.0-4.4 V	85.0%, 300 cycles, 5C	10
Na _{0.67-x} Ca _x Ni _{0.33} Mn _{0.67} O _{2-2x} F _{2x}	2.0-4.3 V	87.2%, 500 cycles, 1C	This work

Table S3. Comparison of the electrochemical performance of $Na_{0.67}$ $_xCa_xNi_{0.33}Mn_{0.67}O_{2-2x}F_{2x}$ and other P2-Na-Ni-Mn-O type materials.

References

- 1. L. Zheng, J. Li and M. N. Obrovac, *Chem. Mater.*, 2017, **29**, 1623-1631.
- K. Kubota, Y. Yoda and S. Komaba, J. Electrochem. Soc., 2017, 164, A2368-A2373.
- G. Singh, N. Tapia-Ruiz, J. M. Lopez del Amo, U. Maitra, J. W. Somerville, A.
 R. Armstrong, J. Martinez de Ilarduya, T. Rojo and P. G. Bruce, *Chem. Mater.*, 2016, 28, 5087-5094.
- Y. Wen, J. Fan, C. Shi, P. Dai, Y. Hong, R. Wang, L. Wu, Z. Zhou, J. Li, L. Huang and S.-G. Sun, *Nano Energy*, 2019, 60, 162-170.

- P.-F. Wang, H.-R. Yao, X.-Y. Liu, Y.-X. Yin, J.-N. Zhang, Y. Wen, X. Yu, L. Gu and Y.-G. Guo, *Sci. Adv.*, 2018, 4, eaar6018.
- Y. Liu, X. Fang, A. Zhang, C. Shen, Q. Liu, H. A. Enaya and C. Zhou, Nano Energy, 2016, 27, 27-34.
- Y. Shi, S. Li, A. Gao, J. Zheng, Q. Zhang, X. Lu, L. Gu and D. Cao, ACS Appl. Mater. Interfaces, 2019, 11, 24122-24131.
- C. Luo, A. Langrock, X. Fan, Y. Liang and C. Wang, J. Mater. Chem. A, 2017, 5, 18214-18220.
- P. Hou, Y. Sun, F. Li, Y. Sun, X. Deng, H. Zhang, X. Xu and L. Zhang, Nanoscale, 2019, 11, 2787-2794.
- Q. Yang, P.-F. Wang, J.-Z. Guo, Z.-M. Chen, W.-L. Pang, K.-C. Huang, Y.-G.
 Guo, X.-L. Wu and J.-P. Zhang, ACS Appl. Mater. Interfaces, 2018, 10, 34272-34282.