Electronic Supplementary Information

Atomic Layer Deposition of Photoelectrocatalytic Material on 3D-Printed Nanocarbon Structures

Siowwoon Ng,^a Raul Zazpe,^{b,c} Jhonatan Rodriguez-Pereira,^{b,c} Jan Michalička,^c Jan M. Macak,^{b,c} Martin Pumera^{*a,d,e,f}

^aFuture Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic.

^bCenter of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 53002 Pardubice, Czech Republic.

^cCentral European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic.

^d3D printing & Innovation Hub, Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic.

^eDepartment of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea.

^fDepartment of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan.

*Corresponding author email address: pumera.research@gmail.com

Fig. S1 XPS high-resolution core level spectra for (A) C 1s, (B) O 1s, and (C) Ti 2p of 300 ALD cycles MoS₂ coated 3D-printed nanocarbon electrodes.

Fig. S2 (A) XRD pattern and (B) Raman spectrum of 300 ALD cycles MoS_2 coated 3D-printed nanocarbon electrode. The peaks are originated from the nanocarbon electrode or TiO_2 inherent impurities presence within the electrode.

Fig. S3 SEM-EDX spectroscopy elemental mapping of a large area of 600 ALD cycles MoS_2 coated 3D-printed nanocarbon electrode for (A) SEM image for an overview of the area, (B) EDX spectrum with the atomic percentage of each element in the table in inset, (C) overlay of all elemental maps, individual map of (D-I) molybdenum, sulfur, carbon, oxygen, titanium, and iron.

Fig. S4. Electrochemical impedance spectroscopy (EIS) Nyquist plots of 38 to 900 ALD cycles MoS_2 coated 3D-printed nanocarbon electrodes recorded at open-circuit potential (OCP) in the frequency range from 10 kHz to 50 mHz in an electrolyte consists of 10 mM [Fe(CN)₆]^{3-/4-} and 0.1 M KCl.

MoS ₂ deposition method	Material of 3D electrode	Electrolyte	Overpotential (mV) vs. RHE at -10 mA cm ⁻²	Reference
Electrodeposition	Steel	1 M KOH	≈350	1
Spray-coating	Carbon	0.5 M H ₂ SO ₄	≈550	2
Electrodeposition	Carbon	0.5 M H ₂ SO ₄	≈390	3
Atomic layer deposition	Carbon	0.5 M H ₂ SO ₄	≈480	This work

Table S1 Comparison of MoS_2 supported by 3D-printed electrodes for hydrogen evolution reaction.

Fig. S5 HER Tafel plot of blank and 38 to 900 ALD cycles MoS_2 coated 3D-printed nanocarbon electrodes, extracted from LSV curves in Fig. 5, (A) without and (B) with irradiation, $\lambda = 660$ nm.

Table S2 Tafel slope of blank and 38 to 900 ALD cycles MoS ₂ coated 3D-printed n	anocarbon
electrodes by fitting the linear portion of the Tafel plot in Figure S5.	

Flootnodo	Tafel slope (mV dec ⁻¹)		
Electrode	Without irradiation	With irradiation	
Blank	464	531	
38 cycles MoS ₂	238	256	
75 cycles MoS ₂	275	272	
150 cycles MoS ₂	225	341	
300 cycles MoS ₂	468	409	
600 cycles MoS ₂	455	408	
900 cycles MoS ₂	430	406	

Fig. S6 Chronoamperometry profile for the stability test of 300 ALD cycles MoS_2 coated 3Dprinted nanocarbon electrodes in 0.5 M H_2SO_4 with an applied potential of -0.45 V_{RHE} for 8 h.

References

- 1 A. Ambrosi and M. Pumera, ACS Sustain. Chem. Eng., 2018, 6, 16968–16975.
- 2 R. Gusmão, Z. Sofer, P. Marvan and M. Pumera, *Nanoscale*, 2019, **11**, 9888–9895.
- 3 C. Iffelsberger, S. Ng and M. Pumera, *Appl. Mater. Today*, 2020, **20**, 100654.