Electronic Supplementary Information

Confined assembly of ultrathin dual-functionalized Z-MXene nanosheets intercalated GO nanofilms with controlled structure for size-selective permeation

Fangqun Liao,^{a§} Zehai Xu,^{a§} Zixuan Fan,^a Qin Meng,^{*b} Bosheng Lv,^a Xiaowei Ye,^a Chong Shen,^b Guoliang Zhang^{*a}

^a Center for Membrane and Water Science & Technology, Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China; Fax/ Tel:86 571 88320863; E-mail: guoliangz@zjut.edu.cn

^b College of Chemical and Biological Engineering, State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310027, P. R. China. Tel: 86-571-87953193; Fax: 86-571-87951227; E-mail: mengq@zju.edu.cn

Experimental

Chemicals and materials

Natural graphite flakes were supplied by Nanjing Xianfeng Nanomaterials Technology Co. Ti_3AlC_2 was purchased from Beijing Kaifa Taote Technology Co. NaNO₃, N, N-dimethylacetamide (DMAc), HCl, H₂SO₄, ammonium acetate (AA), LiF, tris hydroxymethyl aminomethane (Tris), dopamine, H₂O₂, polysulfone (PSF), 2-aminoterephthalic acid (ATA) and sulfanilic acid (SA) were purchased from the market. Dyes reactive brilliant red X-3B (M_w=615.34), congo red (CR) (M_w=696.68), methyl blue (MB) (Mw=799.80) and evans blue (EB) (Mw=960.81) were purchased from market. Deionized water was made by RO-EDI system. All the reagents were all analytical standard and used without any further purification.

Table S1. Comparison of the characteristics and performance of GO-based 2D/2D lamellar membranes and GO-based ultrathin nanofiltration

Sample	Thickness (nm)	Test method	Mark molecules	Molecular weight	Concentration (mg L ⁻¹)	Permeability (L m ⁻² h ⁻¹ bar ⁻¹)	Rejection (%)	Ref.
GNM/SWCNT	~50	cross-flow	MB	373.9	/		96.4	
			RhB	479.0	/	110.6	97.2 9 98.7	9
			FITC	389.4	/			
GO/FLG	26-33	cross-flow	RhB	479.0	/	12 8	22	
			Acid Blue 9	792.8	/	12	96	96 22
GO/M-PAN	7.5	cross-flow	МО	327.3	0.02 mM (6.55)	81	79.6	42
	15					86	83.9	
	30					52	91.4	
PGO	15	cross-flow	MB	800	100		99.8	
			ТО	316		18.5	99.8	43
			SO	547			99.9	
GO/PC	20	dead-end	BB	825.9	10	26.9		
			MB	799.8			>90	44
			EB	960.8				
mul-EGO	56	cross-flow	EBT	461.4	100		98.6	
			MB	799.8			>98	
			AF	585.5		37.575	>98	45
			CR	696.7			>98	
			BR	1017.6			>98	
GOCN	66	dead-end	EB	960.8	10	15.4	95.5	
			MB	799.8			92.6	46
			MnB	319.8			85.5	

membranes.

			110	207.0			41.0	
			MO	327.3			41.2	
a-BN/GO	1210	dead-end	MB	319.8	70	4.15	99.9	47
GO/MoS ₂	~4000	dead-end	CR	696.7	10	7.65	99.6	48
			MB	799.8			97.4	
MoS ₂ /GO	300	dead-end	RhB	479.0	20	48.27	94.6	
			DR80	1373.1			99.9	
			CR	696.7			99.9	49
			RhB	479.0			99.7	
GO/MXene	~550	dead-end	MB	319.8	10	71.9	99.6	50
			NR	288.8			99.5	
			MB	319.8			99.5	
			BB	792.8			99.5	
Ti ₂ C ₃ T _x /GO	90	dead-end	MR	269.3	10	2.1	61	51
			MnB	799.8		0.3	99.5	
			RosB	479.8		0.67	93.5	
			BB	792.8		0.23	100	
GAT-4	45	cross-flow	X-3B	615.3	10	115.5	84.7	This work
			CR	696.7			99.1	
			MB	799.8			99.2	
			EB	960.8			99.7	
GAT-5	46	cross-flow	CR	696.7		141.5	94.1	

Figure S1. Ti 2p spectra of $Ti_3C_2T_x$ MXene treated by stirring original $Ti_3C_2T_x$ MXene at room temperature for 24 h in an atmosphere of argon.

Figure S2. XRD patterns of GO, $Ti_3C_2T_x$, AA- $Ti_3C_2T_x$, GO/ $Ti_3C_2T_x$ and GO/AA- $Ti_3C_2T_x$ nanosheets.

Figure S3. (a-d) TEM images of $GO/Ti_3C_2T_x$ nanosheets with different magnifications.

Figure S4. AFM images of GAT-0 (a), GAT-1 (b), GAT-2 (c), GAT-3 (d), GAT-4 (e) and GAT-5 (f).

Figure S5. Zeta potential of dopamine coated PSF support and prepared GT and GAT-4 membranes.

Figure S6. (a) FTIR spectra of the synthesized GO/ATA-Ti₃C₂T_x and GO/SA-Ti₃C₂T_x nanofilms. (b) The interfacial energy for GO-ATA-Ti₃C₂T_x and GO-SA-Ti₃C₂T_x interface calculated from molecular simulations. The peaks at 1215 and 1048 cm⁻¹ are ascribed to the stretching vibration peaks of -S=O of -SO₃H in GO/SA-Ti₃C₂T_x.^{S1} The presence of amino and carboxylic groups on the surface of GO/ATA-Ti₃C₂T_x nanocomposites is confirmed by FTIR analysis (1470 cm⁻¹ (-NH bending and 1725 cm⁻¹ (C=O stretching).^{S2} The results above demonstrated that 2-aminoterephthalic acid and sulfanilic acid were grafted on the surface of Ti₃C₂T_x nanosheets.

Figure S7. Surface SEM image (a) and cross-section SEM images (b, c) of $GO/Ti_3C_2T_x$ nanofilm. (d) AFM image of $GO/Ti_3C_2T_x$ nanofilm.

Figure S8. (a) Pure water flux and dye rejection of prepared nanofilms. (b) Permeance of the synthesized GO/AA-Ti₃C₂T_x nanofilms by dispersing same amount of GO/AA-Ti₃C₂T_x in 10, 50, 100, 200 and 300 mL water. (c) Permeance of the

synthesized GO/ATA-Ti $_3C_2T_x$, GO/SA-Ti $_3C_2T_x$ and GO/AA-Ti $_3C_2T_x$ nanofilms.

Figure S9. Cross-section SEM images of GO/AA- $Ti_3C_2T_x$ membranes by dispersing same amount of GO/AA- $Ti_3C_2T_x$ in 10 (a), 50 (b), 100 (c) and 300 mL water (d).

Figure S10. (a) Photographs of the GO and GAT-4 membranes before and after soaking in water for a period of time. (b) The long-term test on continuous dye separation performance for GAT-4 and GT membranes.

Figure S11. Water contact angles of GAT and GT membranes.

References:

- S1. S. Saha, M. Jana, P. Samanta, N. C. Murmu, T. Kuila, J. Mater. Chem. A, 2015, 3, 19461.
- S2. Z. Z. Liu, F. R. Cao, M. Wang, M. Wang, L. Li, Angew. Chem. Int. Ed., 2020, 59, 4161.