Enhancing the Stability of Perovskite Solar Cells through Cross-

linkable and Hydrogen Bonding Multifunctional Additive

Xiaodong Li¹, Shanzhe Ke¹, XiuXiu Feng¹, Xiaoyan Zhao¹, Wenxiao Zhang¹ and Junfeng Fang^{1,2*}

¹ School of Physics and Materials Science, Ministry of Education Nanophotonics & Advanced Instrument Engineering Research Center, East China Normal University, Shanghai 200062, China

² Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China

E-mail: jffang@phy.ecnu.edu.cn

Fig. S1. Photographs of DPPA before and after thermal treatment.

Fig. S2. (a) chemical structure of TMTA additive. (a) activation energy and (b) ions conductivity of perovsktie films with TMTA additive. TMTA additive contains cross-linkable CH2=CH groups (blue), but doesn't contain alkoxy (-O-CH₂) or hydroxyl (-OH) groups.

Fig. S3. Enlarged FTIR spectra of pure DPPA and perovskite with DPPA in C=O group region. The shift of $v_{C=O}$ can be attributed to the coordination between C=O and PbI₂, which helps to passivate the defects at grain boundaries.

Fig. S4. J-V curves of PSCs with different concentration of DPPA.

DPPA concentration	n V _{oc}	J _{sc}	FF	PCE
(mg mL⁻¹)	(V)	(mA cm ⁻²)	(%)	(%)
0	1.00	25.10	80.5	20.2
2	1.01	24.88	81.7	20.5
3	1.07	24.49	80.9	21.1
5	1.10	24.66	81.0	22.1
10	1.16	23.56	73.4	20.0

Table S1. Device parameters of PSCs with different concentration of DPPA.

Fig. S5. (a) stabilized maximum power point output and (b) external quantum efficiency (EQE) of PSCs with DPPA.

Fig. S6. V_{oc} dependence of PSCs on light intensity.

According to the equation $V_{oc} = V_s + nK_BT/q *ln (P/Ps)$, we can obtain the ideal factor (n) of PSCs, where V_{oc} is the open-circuit voltage, V_s is the voltage under standard sun light, K_B is the Boltzmann 5 constant, T is absolute temperature, q is the elementary charge, P is the light intensity and Ps is one standard sun intensity. Ideally, a device without trapping of charge carriers will exhibit a n-value of 1. When n approaches 2, trap-assisted recombination dominates in the device.

Fig. S7. Electrical impedance spectroscopy (EIS) of PSCs in dark. The inset shows the equivalent circuit in PSCs.

Fig. S8. Operational stability of PSCs with TMTA under MPP tracking conditions.

Fig. S9. Immersing experiment of perovskite films in chlorobenzene solvent under 85 °C conditons. In this experiment, lodine will escape from perovskite layer due to ions diffusion and then transform into I₂, which will be captured by chlorobenzene. The curves show the absorbance of chlorobenzene 5 solvent after immersing perovskite for 10 hours.

Fig. S10. XRD patterns of perovskite films under thermal conditions (100 °C) for different time.