Supporting Information

Low-cost and High-power $K_4[Mn_2Fe](PO_4)_2(P_2O_7)$ as a novel cathode with outstanding cyclability for K-ion batteries

Jungmin Kang^{‡a}, Hyunyoung Park^{‡a}, Wonseok Ko^a, Yongseok Lee^a, Jinho Ahn^a, Jung-Keun Yoo^b, Seok Hyun Song^c, Hyungsub Kim^{*c} and Jongsoon Kim^{*a}

^aDepartment of Energy Science, Sungkyunkwan University, Suwon, 440-746, Republic of Korea

^bCarbon Composites Department, Composites Research Division, Korea Institute of Materials

Science (KIMS), 797 Changwondaero, Changwon, Republic of Korea

^cKorea Atomic Energy Research Institute (KAERI), Daedeok-daero 989 Beon-Gil, Yuseonggu, Daejeon, 34057, Republic of Korea

‡ These authors contributed equally to this work.

Corresponding Authors: Dr. Hyungsub Kim (<u>hyungsubkim@kaeri.re.kr</u>), Prof. Jongsoon Kim (jongsoonkim@skku.edu).

Fig. S1. TGA analysis of pristine $Na_4[Mn_2Fe](PO_4)_2(P_2O_7)$ composite between 30°C and 550°C.

Fig. S2. (a) Electrochemical profiles of Na₄[Mn₂Fe](PO₄)₂(P₂O₇) during desodiation process.
(b) Electrochemical profiles of K₄[Mn₂Fe](PO₄)₂(P₂O₇) during Na⁺/K⁺ ion-exchange process for 50 cycles.

Fig. S3. XRD pattern of sample obtained by direct synthesis of $K_4[Mn_2Fe](PO_4)_2(P_2O_7)$. $K_4P_2O_7$ (97%, Sigma Aldrich), $MnC_2O_4 \cdot 2H_2O$ (Alfa Aesar, 93%), $FeC_2O_4 \cdot 2H_2O$ (99%, Sigma Aldrich), and $NH_4H_2PO_4$ (Daejung, 98%) in a molar ratio of 1:2:1:2 were used as precursors, and 5 wt% pyromellitic acid (PA, $C_6H_{10}O_2$) (Alfa Aesar, 96%) was additionally prepared. The precursors were mixed by high-energy ball milling for 12 h and sealed in an Ar-filled glove box. The mixed powder was calcined at 300°C under Ar flow to remove the organic residues. After calcination, the 5 wt% PA was added and mixed, and the powder was pelletized. The pelletized sample was sintered at 550°C for 12 h under Ar flow.

 $K_4[Mn_2Fe](PO_4)_2(P_2O_7)$ during ion-exchange process: (a) K 2p (2p_{1/2}: 293.1 eV and K 2p_{3/2}: 295.9 eV) and (b) C 1s peaks (C-C: 284.78 eV and C-O: 286.2 eV).^{1,2}

Fig. S5. Characterization of $Na_4[Mn_2Fe](PO_4)_2(P_2O_7)$ and $K_4[Mn_2Fe](PO_4)_2(P_2O_7)$: (a) XRD patterns in the range of 8°–50° and (b) TEM and corresponding EDS mapping of Na, Mn, Fe, and K elements.

Fig. S6. SEM images of (a) Na₄[Mn₂Fe](PO₄)₂(P₂O₇) and (b) K₄[Mn₂Fe](PO₄)₂(P₂O₇).

Fig. S7. CV profiles of $K_4[Mn_2Fe](PO_4)_2(P_2O_7)$ with a scan rate of at 1 mV s⁻¹ at the voltage range of 2.0-4.3V (*vs.* K⁺/K).

Fig. S8. Cycle performance of $K_4[Mn_2Fe](PO_4)_2(P_2O_7)$ at a high current rate of 5C for 200 cycles in the voltage range of 2.0–4.3 V (*vs.* K⁺/K).

Fig. S9. (a) Initial charge/discharge profile of $K_4[Mn_2Fe](PO_4)_2(P_2O_7)//potassiated hard$ $carbon full cell in the range of 1.9–4.2 V at C/20. (b) Cycling performance of <math>K_4[Mn_2Fe](PO_4)_2(P_2O_7)//potassiated$ hard-carbon full cell at C/5 over 200 cycles.

Fig. S10. (a) Power-capability and (b) cycle performance of $Na_4[Mn_2Fe](PO_4)_2(P_2O_7)$ in the voltage range of 2.0–4.3 V (*vs.* K⁺/K) under the KIB system.

Fig. S11. CV profiles of the (a) $Na_4[Mn_2Fe](PO_4)_2(P_2O_7)$ and (b) $K_4[Mn_2Fe](PO_4)_2(P_2O_7)$ electrode measured at scan rate of 1 mV s⁻¹. GITT profiles of (c) $Na_4Mn_2Fe(PO_4)_2(P_2O_7)$ and (d) $K_4[Mn_2Fe](PO_4)_2(P_2O_7)$ at a current rate of C/10 (1C = 117 mA g⁻¹). EIS profiles of (e) $Na_4[Mn_2Fe](PO_4)_2(P_2O_7)$ and (f) $K_4[Mn_2Fe](PO_4)_2(P_2O_7)$. The experiments above were performed under the KIB system.

Fig. S12. Full *operando* XRD patterns of $K_x[Mn_2Fe](PO_4)_2(P_2O_7)$ (1.2 $\leq x \leq 4.0$) between 27°

and 35.5°.

Fig. S13. (a) SEM image, (b) TEM image, and (c) XRD patterns of $K_x[Mn_2Fe](PO_4)_2(P_2O_7)$ (1.2 $\leq x \leq 4.0$) electrode after cycling for 300 cycles in the range of 8°–50°.

	Na	Mn	Fe	к
Na ₄ [Mn ₂ Fe](PO ₄) ₂ (P ₂ O ₇)	3.997	2.004	1.000	0
K ₃ Na ₁ [Mn ₂ Fe](PO ₄) ₂ (P ₂ O ₇)	1.004	2.003	1.000	2.992
K ₄ [Mn ₂ Fe](PO ₄) ₂ (P ₂ O ₇)	0	2.001	1.000	3.997

Table S1. ICP analyses on the atomic ratio of Na, Mn, Fe, and K of various K_xNa_4 . $_x[Mn_2Fe](PO_4)_2(P_2O_7)$ phases formed during the ion-exchange process from $Na_4[Mn_2Fe](PO_4)_2(P_2O_7)$ to $K_4[Mn_2Fe](PO_4)_2(P_2O_7)$.

Sample	а	b	С	Volume	
Na ₄ [Mn ₂ Fe](PO ₄) ₂ (P ₂ O ₇)	17.9526(4)	6.6018(2)	10.7312(4)	1271.87(5)	
K ₄ [Mn ₂ Fe](PO ₄) ₂ (P ₂ O ₇)	18.2501(7)	6.6450(2)	11.1393(4)	1350.89(9)	

Table S2. Comparison of lattice parameters and volume of $Na_4[Mn_2Fe](PO_4)_2(P_2O_7)$ and $K_4[Mn_2Fe](PO_4)_2(P_2O_7)$.

Atom	Wyckoff Position	x	У	z	B _{iso}	Occupancy
К1	4a	0.5000(13)	0.751(2)	0.9780(16)	0.95(9)	0.83328
К2	4a	0.2891(8)	0.8530(18)	0.7792(17)	0.95(9)	1.00000
кз	4a	0.3940(7)	0.4219(16)	0.259(3)	0.95(14)	0.98185
К4	4a	0.4875(10)	0.714(2)	0.5481(16)	0.95(18)	0.80000
Fe1	4a	0.3398(4)	0.091(3)	0.5018(12)	1.20(6)	0.33330
Fe2	4a	0.1367(4)	0.594(4)	0.4862(12)	1.20(6)	0.33330
Fe3	4a	0.2415(6)	0.316(2)	0.753(2)	1.20(6)	0.33330
Mn1	4a	0.3398(4)	0.091(3)	0.5018(12)	1.20(6)	0.66670
Mn2	4a	0.1367(4)	0.594(4)	0.4862(12)	1.20(6)	0.66670
Mn3	4a	0.2415(6)	0.316(2)	0.753(2)	1.20(6)	0.66670
01	4a	0.2440(19)	0.568(9)	0.596(3)	0.99(14)	1.00000
02	4a	0.3560(17)	0.431(5)	0.487(4)	0.99(14)	1.00000
03	4a	0.3500(17)	0.768(5)	0.533(3)	0.99(14)	1.00000
04	4a	0.2508(19)	0.592(8)	0.393(3)	0.99(14)	1.00000
05	4a	0.2307(18)	0.099(9)	0.607(3)	0.99(14)	1.00000
06	4a	0.1239(16)	-0.110(5)	0.498(3)	0.99(14)	1.00000
07	4a	0.2369(19)	0.042(7)	0.378(3)	0.99(14)	1.00000
08	4a	0.1314(15)	0.263(5)	0.453(3)	0.99(14)	1.00000
09	4a	0.4833(19)	0.359(6)	0.706(3)	0.99(14)	1.00000
O10	4a	0.5486(20)	0.551(7)	0.853(3)	0.99(14)	1.00000
011	4a	0.6241(14)	0.296(4)	0.739(6)	0.99(14)	1.00000
012	4a	0.5775(19)	0.601(8)	0.643(3)	0.99(14)	1.00000
013	4a	0.4658(19)	0.095(8)	0.864(3)	0.99(14)	1.00000
014	4a	0.3676(15)	0.175(5)	0.713(3)	0.99(14)	1.00000
015	4a	0.480(2)	-0.007(6)	0.624(3)	0.99(14)	1.00000
P1	4a	0.3016(8)	0.584(5)	0.502(2)	0.57(10)	1.00000
P2	4a	0.1774(8)	0.085(6)	0.490(2)	0.57(10)	1.00000
P3	4a	0.5596(7)	0.4579(17)	0.743(4)	0.57(10)	1.00000
P4	4a	0.4448(8)	0.156(2)	0.749(3)	0.57(10)	1.00000

Ta

ble S3. Detailed structural information for $K_4[Mn_2Fe](PO_4)_2(P_2O_7)$ obtained through Rietveld refinement.

Active Materials	Electrolyte	Voltage Range (V)	Specific Capacity (mAh g ⁻¹)	Cycle Retention (%)	Experimental condition	Ref.
K4[Mn2Fe](PO4)2(P2O7)	0.5 M KPF ₆ in EC:DEC (1:1 v/v%)	2.0-4.3	110.0	83.0	300 cycles at 39.0 mA $\rm g^{-1}$	This work
K _{0.45} MnO ₂	0.8 M KPF₀in EC:DEC (1:1 v/v%)	1.5-4.0	128.6	70.8	100 cycles at 20.0 mA $g^{\cdot 1}$	38
K _{0.7} Fe _{0.5} Mn _{0.5} O ₂	0.8 M KPF ₆ in EC:DMC (1:1 v/v%)	1.5-4.0	178.0	89.0	60 cycles at 100.0 mA $\rm g^{-1}$	39
P2-K _{2/3} [Ni _{1/3} Mn _{2/3}]O ₂	0.5 M KPF ₆ in EC:DEC (1:1 v/v%)	1.5-4.5	82.0	96.8	200 cycles at 86.0 mA $g^{\text{-}1}$	40
P3-K _{0.54} [Co _{0.5} Mn _{0.5}]O ₂	1.0 M NaClO ₄ in EC:PC (1:1 v/v%)	1.5-3.9	120.4	85.0	100 cycles at 20.0 mA $g^{\text{-}1}$	41
$K_{0.5}V_2O_5$	1.5 M KFSI in EC:DEC (1:1 v/v%)	1.5-3.8	90.0	81.0	250 cycles at 100.0 mA $\rm g^{\text{-}1}$	42
K ₃ V ₂ (PO ₄) ₃ /C	0.8 M KPF ₆ in EC:DEC (1:1 v/v%)	2.5-4.3	54.0	81.4	100 cycles at 20.0 mA $\rm g^{-1}$	43
$K_3V_2(PO_4)_2F_3$	1.0 M KPF ₆ in EC:PC (1:1 v/v%)	2.0-4.6	100.0	95.0	180 cycles at 90 mA g ⁻¹	44
KVP ₂ O ₇	0.5 M KPF ₆ in EC:DEC (1:1 v/v%)	2.0-5.0	60.0	84.9	100 cycles at 25.0 mA $\rm g^{-1}$	45

 Table S4. Electrochemical properties of various cathode materials for KIBs.

Reference

- 1 R. Sawyer, H. W. Nesbitt and R. A. Secco, J. Non. Cryst. Solids, 2012, **358**, 290–302.
- L. Liu, S. Wang, Z. Zhang, J. Fan, W. Qi and S. Chen, *Ionics (Kiel).*, 2019, 25, 1035–1043.