Achieving 10% efficiency in non-fullerene all-smallmolecules organic solar cells without extra treatments

Daobin Yang,^{a,b,*} Kuibao Yu,^a Jun Xu,^a Jinsheng Zhang,^{a,b} Jianqi Zhang,^c Jing Gao,^{a,b} Wei Song,^{a,b} Dandan Li,^{a,b} Zhenyu Chen,^{a,b} and Ziyi Ge^{a,b,*}

^a Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.

^b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

^c CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.

Corresponding Authors

*Daobin Yang, E-mail: yangdaobin@nimte.ac.cn

*Ziyi Ge, E-mail: geziyi@nimte.ac.cn

No.	D : A	Treatments	V _{oc}	J_{sc}	FF	PCE	References
1	BSFTR · Y6	As-cast	(v) 0.94	(IIIA CIII -) 0.97	(%)	(%) 0.22	Adv. Mater.,
		TA (120°C/5min)	0.85	22.86	64.87	12 56	2019, 31,
		SVA (CE) +TA	0.85	23.16	69.66	13.69	1904283
			0.05	23.10	05.00	13.05	Joule. 2019. 3.
Z	BIRIYO	AS-Cast					3034-3047;
		TA (100°C/10min)	0.85	22.25	56.4	10.67	
	BTR : Y6	As-cast	0.86	16.42	43.2	6.13	Org. Electron., 2020, 105904.
		TA (110°C/10min)	0.85	20.18	70.5	12.12	2020, 20000
3	BTR-Cl : Y6	As-cast					Adv. Energy
		TA (120°C/10min)	0.86	24.17	65.5	13.61	10, 2001076.
4	ZR1 : Y6	As-cast	0.876	14.23	40.50	5.05	Nat. Commun.,
		TA (120°C/10min)	0.861	24.34	68.44	14.34	2019, 10, 5393
5	BOHTR : Y6	As-cast	0.85	8.3	28.3	2.1	Sol. RRL, 2020,
		TA (115°C/10min)	0.82	22.5	52.5	10.8	4, 1900326
6	BIHTR : Y6	As-cast	0.72	2.2	23.0	0.5	
		TA (115°C/10min)	0.84	21.5	66.9	12.3	
7	DCAO3TBDTT	As-cast	0.917	2.74	21.38	0.54	Angew. Chem.
	: Y6	TA (105°C/10min)+CN	0.804	21.71	60.95	10.64	59, 2808-2815
8	BTEC-1F : Y6	As-cast	0.941	4.92	22.59	1.05	
		TA (105°C/10min)	0.870	21.21	61.35	11.33	
9	BTEC-2F : Y6	As-cast	0.895	14.51	51.54	6.69	
		TA (105°C/10min)+CN	0.854	21.55	72.35	13.34	
10	BT-2F : Y6	As-cast	0.874	17.08	59.84	8.94	J. Mater. Chem.
		TA (100°C/10min)	0.853	22.38	72.27	13.80	7405–7411
11	BDTT-TR : Y6	As-cast	0.868	0.61	22.25	0.12	Sci. China
		TA (140°C/2min)	0.780	23.64	66.06	12.18	63, 1246-1255
12	TBFT-TR : Y6	As-cast	0.879	0.95	22.18	0.19	

Table S1. The performances for the reported small molecules: Y6-based organic solar cells devices

		TA (140°C/2min)	0.784	24.59	72.78	14.03	
13	SM1 : Y6	As-cast	0.897	2.70	21.9	0.53	Adv. Mater.
		TA (120°C/10min)	0.805	23.59	67.0	12.72	1908373
14	SM1-S : Y6	As-cast	0.921	1.26	20.2	0.23	
		TA (120°C/10min)	0.825	23.23	37.7	12.94	
15	SM1-F : Y6	As-cast	0.936	7.46	24.6	1.72	
		TA (120°C/10min)	0.866	23.25	69.9	14.07	
16	FG3 : Y6	As-cast	0.94	15.08	57.0	8.08	Sol. RRL, 2020,
		SVA (THF)	0.90	18.38	65.0	10.75	4, 2000460
17	FG4 : Y6	As-cast	0.84	16.49	60.0	8.31	
		SVA (THF)	0.79	20.92	67.0	11.07	
18	ZR2-C3: Y6	As-cast	0.898	13.93	34.6	4.33	Adv. Funct.
		TA (120°C/10min)	0.854	24.70	70.0	14.78	30, 2005426.

1. Experimental section

1.1 Instruments and characterization

¹H NMR and ¹³C NMR spectra were recorded on Bruker (AVANCE III 400MHz). High resolution time of flight mass spectrometer (TOF-MS) was obtained from AB Sciex (TripleTOF 4600). Thermogravimetric analysis (TGA) was under taken using a PerkinElmer (Diamond TG/DTA) under N₂ atmosphere at a heating rate of 10 °C min⁻¹. Absorption spectra of both solution and thin-film samples of the objective compounds were recorded using a Perkin Elmer (Lamdba 950) UV-Vis scanning spectrophotometer. The solution samples were prepared in chloroform solution at a concentration of 2.0×10^{-5} mol L⁻¹, while the film samples were obtained by spin-coating from chloroform solution (5 mg mL⁻¹, 2000 rpm) on quartz substrates.

The morphologies of the active layers were analyzed through atomic force microscopy (AFM) in tapping mode under ambient conditions using Bruker (Dimension ICON) instrument. GI-WAXS measurements were performed on a XEUSS SAXS/WAXS system (XENOCS, France) at the National Center for Nanoscience and Technology. The

wavelength of the X-ray beam is 1.54 Å, and the incident angle was 0.18°. Scattered X-rays were detected by using a Dectris Pilatus 300 K photon counting detector. The blend films for GI-WAXS and AFM were made by the same method for device active layer except for the substrate as Si/PEDOT:PSS.

The Cyclic Voltammetry (CV) measurement was carried out in 2.0×10^{-4} mol L⁻¹ anhydrous dichloromethane (DCM) with 0.1 mol L⁻¹ tetrabutyl ammonium perchlorate (Bu₄NClO₄, as supporting electrolyte) under an argon atmosphere at a scan rate of 0.1 V s⁻¹ using a PC controlled LK 2006A electrochemical workstation. The CV system was constructed using a Pt disk as the working electrode, a Pt wire as the counter electrode, and a Ag/AgNO₃ (0.1 mol L⁻¹ in acetonitrile) electrode as the reference electrode. Ferrocene was used as an internal standard. The electrochemical potential was internally calibrated against the standard ferrocene/ ferrocenium redox couple (Fc/Fc⁺), which has a known reduction potential of -4.80 eV relative to vacuum level. The HOMO and LUMO of the objective compounds are calculated according to the following equations:

$$HOMO = -[\frac{E_{ox}^{onest}}{red} + 4.8]$$
$$LUMO = -[\frac{E_{red}^{onest}}{red} + 4.8]$$

Where E_{ox}^{onset} and E_{red}^{onest} are the onset of oxidation potential and reduction potential *vs*. Fe/Fe⁺, respectively.

1.2 SCLC measurement

Hole-only and electron-only devices were fabricated with the structure of ITO/MoO₃ /SM:Y6 (100 nm)/MoO₃/Ag and ITO/ZnO/SM:Y6 (100 nm)/PDINO/Al, respectively. Mobilities were extracted by fitting the current density-voltage curves using space charge limited current (SCLC), the *J-V* curves of the devices were plotted as $J^{0.5}$ versus V using Eq. 1:

$$J = \frac{9}{8} \frac{\varepsilon_r \times \varepsilon_o \times \mu \times V^2}{L^3} \exp\left(0.89\beta \sqrt{\frac{V}{L}}\right) \qquad (1)$$

where J is current density, L is film thickness of active layer, μ_h is hole mobility, μ_e is

electron mobility, ε_r is relative dielectric constant of the transport medium, ε_0 is permittivity of free space (8.85 × 10⁻¹² F m⁻¹), $V (= V_{appl} - V_{bi})$ is the internal voltage in the device, where V_{appl} is the applied voltage to the device and V_{bi} is the built-in voltage due to the relative work function difference of the two electrodes.

Figure S1. TGA curves of 3BDT-4 and 3BDT-5.

Figure S2. Cyclic voltammogram of 3BDT-4 and 3BDT-5.

Figure S3. Cyclic voltammogram of the non-fullerene acceptor Y6.

Table S2. Photovoltaic performances of ASM-OSCs based on 3BDT-4:Y6 with different weight ratios without extra treatments.

Active layers	$V_{\rm oc}$ [V]	$J_{\rm sc}$ [mA cm ⁻²]	FF	PCE ^{a)} [%]
3BDT-4 : Y6 = 1 : 0.50	0.832	16.5	0.407	5.59 (5.48)
3BDT-4 : Y6 = 1 : 0.55	0.829	17.0	0.413	5.82 (5.68)
3BDT-4 : Y6 = 1 : 0.90	0.816	16.1	0.405	5.32 (5.21)

^{a)} Average values of 4 individual cells were given in parentheses.

Table S3. Photovoltaic performances of ASM-OSCs based on 3BDT-5:Y6 with different weight ratios without extra treatments.

Active layers	$V_{\rm oc}$ [V]	$J_{\rm sc}$ [mA cm ⁻²]	FF	PCE ^{a)} [%]
3BDT-5 : Y6 = 1 : 0.50	0.844	20.9	0.551	9.72 (9.40)
3BDT-5 : Y6 = 1 : 0.55	0.840	21.3	0.581	10.4 (10.0)
3BDT-5 : Y6 = 1 : 0.90	0.825	19.6	0.503	8.13 (7.86)

a) Average values of 4 individual cells were given in parentheses.

Active layers	$V_{\rm oc}$ [V]	$J_{\rm sc}$ [mA cm ⁻²]	FF	PCE ^{a)} [%]
As-cast	0.840	21.3	0.581	10.4 (10.0)
TA 80 °C/10min	0.832	21.6	0.590	10.6 (10.4)
TA 100 °C/10min	0.829	22.1	0.600	11.0 (10.7)
TA 120 °C/10min	0.815	19.5	0.635	10.1 (9.85)
TA 140 °C/10min	0.780	19.7	0.613	9.42 (9.20)

Table S4. Photovoltaic performances of ASM-OSCs based on 3BDT-5:Y6 (1:0.55, weight ratio) with different thermal annealing (TA) treatments.

a) Average values of 4 individual cells were given in parentheses.

Table S5. Photovoltaic performances of ASM-OSCs based on 3BDT-5:Y6 (1:0.55, weight ratio) with different solvent vapor annealing (SVA) treatments using Chloroform as solvent.

Active layers		$J_{\rm sc}$	FF	PCE a)
				[⁄0]
As-cast	0.840	21.3	0.581	10.4 (10.0)
SVA 60s	0.841	20.7	0.542	9.44 (9.23)
SVA 90s	0.834	22.1	0.571	10.5 (10.2)
SVA 120s	0.831	20.0	0 509	8 46 (8 30)
~ 1205	0.001	20.0	0.000	0.10 (0.50)

a) Average values of 4 individual cells were given in parentheses.

Active layers	$V_{\rm oc}$	$J_{\rm sc}$ [mA cm ⁻²]	FF	PCE a)
	[*]			[/0]
As-cast	0.829	17.0	0.413	5.82 (5.68)
TA 80 °C/10min	0.820	18.2	0.428	6.39 (6.30)
T + 400.07/40.			· · · · -	
TA 100 °C/10min	0.815	17.3	0.447	6.30 (6.22)
TA 120 00/10	0.002	165	0.450	
TA 120 °C/10min	0.803	16.5	0.459	6.08 (5.96)

Table S6. Photovoltaic performances of ASM-OSCs based on 3BDT-4:Y6 (1:0.55, weight ratio) with different thermal annealing treatments.

a) Average values of 4 individual cells were given in parentheses.

Figure S4. 2D GIWAXS patterns of the as-cast 3BDT-5:Y6 blend films (a), with TA (b), with SVA (c), and the corresponding out-of-plane and in-plane line cuts of the blend films.