Supplementary Information

Earth-abundant iron(III) species serves as a cocatalyst boosting the multi-electron reduction of IO_3^-/I^- redox shuttle in Z-scheme photocatalytic water splitting

Katsuya Murofushi,^{a,†} Kanta Ogawa,^{a,b,†} Hajime Suzuki,^a Ryota Sakamoto,^a Osamu Tomita,^a Kosaku Kato,^c Akira Yamakata,^c Akinori Saeki,^d Ryu Abe^{a,b,*}

^aDepartment of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.

^bAIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National

Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan.

^cGraduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-

8511, Japan

^dDepartment of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

Fig. S1 XRD pattern of bare and FeO_x-Bi₄TaO₈Cl samples.

Fig. S2 a, DRS of bare and FeO_x- Bi₄TaO₈Cl. b, Time courses of O₂ evolution over FeO_x-Bi₄TaO₈Cl in aqueous NalO₃ solution (4 mM) under visible-light (λ > 400 or > 500 nm) irradiation. FeO_x-Bi₄TaO₈Cl shows an absorption shoulder at 480-620 nm. However, upon excitation with 500 nm, negligible O₂ evolution was observed. We then assign the absorption shoulder to light scattering by the FeO_x particles, rather than the direct interfacial charge transfer.

Fig. S3 SEM image and SEM-EDS elemental mapping of FeO_x -Bi₄TaO₈Cl.

Fig. S4 The effect of the loading amount (a) and the calcination temperature (b) for $FeO_{x^{-}}$ loading on photocatalytic activity.

Fig. S5 The effect of the adding of the Fe³⁺ cation of same amount as the loaded FeO_x (17 µmol) into the reaction solution (NaIO₃ solution (4 mM), pH = 2.5) on O₂ evolution under visible-light ($\lambda > 400$ nm) irradiation. Mere adding of Fe³⁺ to the reaction solution (blue triangle) show much lower O₂ evolution activity than the FeO_x-Bi₄TaO₈Cl. The small amount of O₂ on bare Bi₄TaO₈Cl sample by the addition of Fe³⁺ was probably generated through the reduction of Fe³⁺ to Fe²⁺ by photoexcited electrons.

Fig. S6 The pH dependence of Zeta potentials of bare and FeO_x -Bi₄TaO₈Cl.

Fig. S7 Band structure of Bi_4TaO_8Cl . Effective masses were estimated from the DFT results. The mean of the relative effective masses in the in-plane (Γ -X and Γ -Y) directions are 0.25 m_0 and 1.4 m_0 for electrons and holes, respectively.

Fig. S8 XP spectra focusing on Fe 2p region for FeO_x -Bi₄TaO₈Cl before and after photoirradiation (10 h) in the absence of IO_3^- . The FeO_x species should underwent facile oxidation by the ambient O₂.

Fig. S9 Absorption spectra of Fe^{2+} produced in the reaction solution after the photoirradiation on FeO_x -Bi₄TaO₈Cl with or without IO_3^- in the reaction solution.

Fig. S10 a, Repeatability test for the photocatalytic O₂ evolution over FeO_x-Bi₄TaO₈Cl in NalO₃ aqueous solution (4 mM) under visible light irradiation ($\lambda > 400$ nm). b, Cyclic voltammogram for a FeO_x/FTO working electrode in 0.1 M Na₂SO₄ solution containing 4 mM NalO₃. c,d, SEM images of the FeO_x/FTO working electrode before and after the electrochemical operation. e, SEM image of bare FTO. In the cyclic voltammetry, the catalytic current for the reduction of IO₃⁻ decreased by repeating the cycle. The morphology of FeO_x/FTO changed after the electrochemical operation, where the aggregation of FeO_x proceeded in SEM.

Fe(OH)₂

b

NalO₃ aq. (4 mM, pH5, 100 mL)

С

water(pH5, 100 mL)

Fig. S11 Pictures of as-prepared $Fe(OH)_2$ colloidal solution (a), NaIO₃ aqueous solution (b), water (c). $Fe(OH)_2$ colloidal solution (0.4 mmol as Fe) after adding to IO_3^- aqueous solution (4 mM, 100 mL) (d) and water (e).

Fig. S12 a-d, Mott–Schottky plots for Bi_4TaO_8Cl (a), TiO_2 (b), $BiVO_4$ (c), WO_3 (d) in 0.5 M Na_2SO_4 solution (pH = 5). e, CBM positions of these samples estimated from the Mott-Schottky plots along with redox potentials of Fe^{III}/Fe^{II} , IO_3^-/I^- , $Co(bpy)_3^{3+}/Co(bpy)_3^{2+}$, $[Fe(CN)_6]^{3-}/[Fe(CN_6)]^{4-}$.