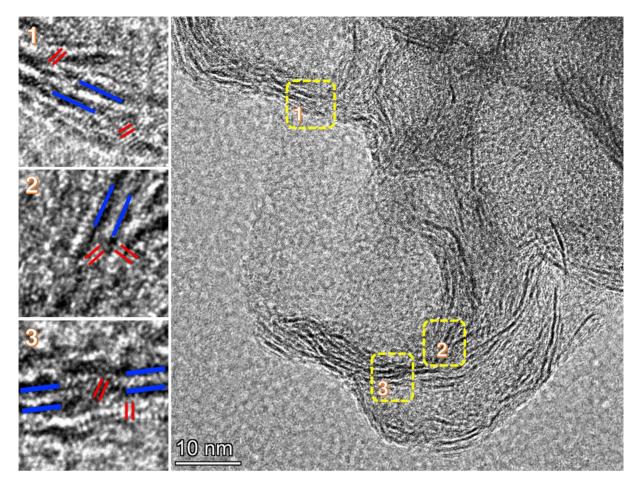
Supporting Information

Heteroarchitecturing a Novel Three-Dimensional Hierarchical MoO₂/MoS₂/Carbon Electrode Material for High-Energy and Long-Life Lithium Storage


Xufei Liu,^{a,}‡ Peng Mei,^{b,}‡,* Yu Dou,^a Rui Luo,^a Yusuke Yamauchi^{c,d,*} and Yingkui Yang^{a,b,*}

^{*a*} Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China. E-mail: ykyang@mail.scuec.edu.cn

^b Hubei Engineering Technology Research Centre of Energy Polymer Materials, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China. E-mail: meipeng@scuec.edu.cn

^c Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia. E-mail: y.yamauchi@uq.edu.au

 ^d JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

Figure S1 HRTEM image of $MoO_2/MoS_2/C$ with partial enlarged view of the lattice fringes, showing the coexistence of two crystalline phases. The red lines denote the lattice fringes of the MoO_2 phase, while the blue ones indicate the lattice fringes of the MoS_2 phase.

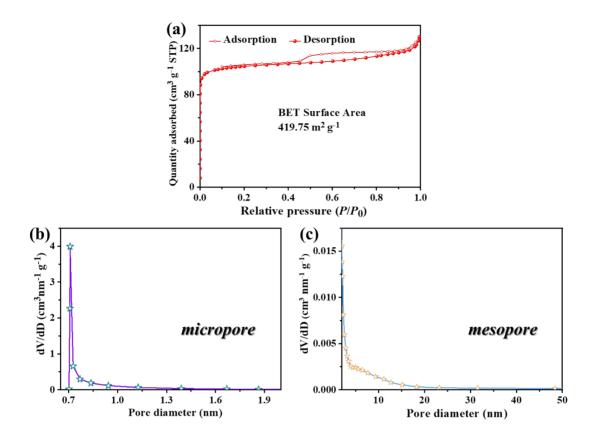


Figure S2 (a) N_2 adsorption–desorption isotherm, and (b, c) PSDs of MoO₂/MoS₂/C in the micropore and mesopore ranges, respectively.

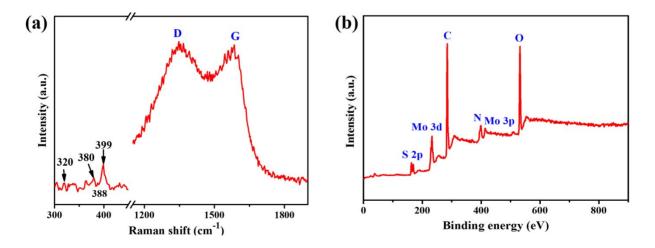
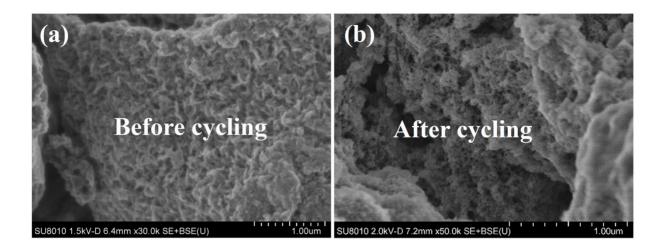
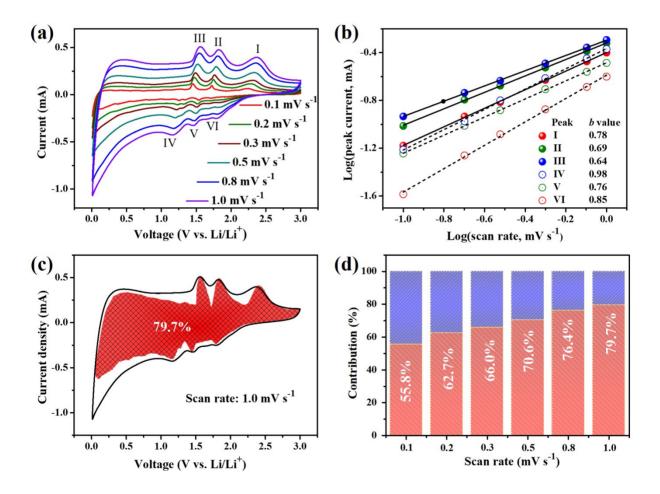




Figure S3 (a) Raman spectrum and (b) XPS spectrum of $MoO_2/MoS_2/C$.

Figure S4 SEM images of the $MoO_2/MoS_2/C$ electrode before (a) and (b) after cycling at 5 A g^{-1} for over 2000 cycles.

Figure S5 (a) CV curves at different scan rate. (b) Log *i* vs. log *v* plots at different oxidation and reduction states. (c) Separation of the capacitive and diffusion currents at a scan rate of 1.0 mV s⁻¹. (d) Normalized contribution ratio of capacitive and diffusion-controlled capacities at various scan rates.

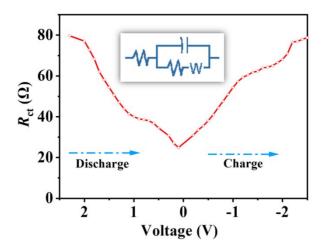
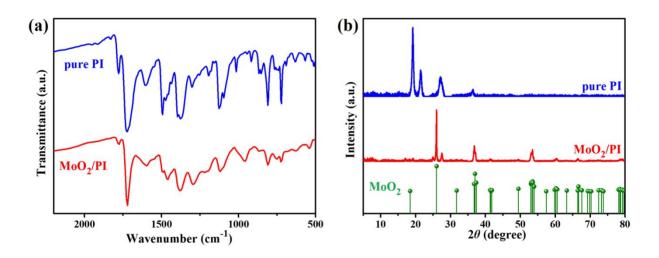



Figure S6 The fitting data of R_{ct} values at various charge/discharge voltages. The inset represents the equivalent circuit.

Figure S7 (a) FTIR spectra and (b) powder XRD patterns of the pure PI and MoO₂/PI precursors obtained after the hydrothermal polymerization.

Note for Figure S7: The appearance of the characteristic absorption peaks (the peaks of C=O at 1720 and 1778 cm⁻¹, and the peak of imide C-N at 1380 cm⁻¹)¹ in the FT-IR spectra shown in Figure S7a clearly demonstrates the successful synthesis of PI in both cases. The XRD patterns in Figure S7b clarify the existence of both PI and MoO₂ crystal phases, indicating the successful synthesis of MoO₂/PI composite through the hydrothermal polymerization in the presence of PMo₁₂.²

Sample	XPS analysis (atom%)				CHNS analysis (atom%)			
	С	0	Ν	S	С	Н	Ν	S
N-S-C	88.35	4.91	5.25	1.48	73.97	2.27	5.91	4.36

Table S1 The elemental compositions of N-S-C obtained by XPS and CHNS analyses.

References

- 1. X. Liu, S. Qiu, P. Mei, Q. Zhang and Y. Yang, J. Mater. Sci., 2020, 56, 3900-3910.
- J. Xie, K. Zhu, J. Min, L. Yang, J. Luo, J. Liu, M. Lei, R. Zhang, L. Ren and Z. Wang, *Ionics*, 2019, 25, 1487-1494.