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EXPERIMENTAL SECTION

Chemicals and materials. Polyvinyl alcohol (PVA, degree of polymerization, 1750 ± 50), 

glutaraldehyde (GA, 50% aqueous solution), pyrrole, ammonium persulfate (APS), and copper 

phthalocyanine-3,4’,4’’,4’’’-tetrasulfonic acid tetrasodium salt (CuPcTs) were bought from Sigma-

Aldrich. Commercial Si particle (average size of ~50 nm) was obtained from Alfa Aesar.

Synthesis of the PPy/PVA interpenetrating gel. In a typical synthesis, 1 mL 25% GA aqueous 

solution, 152 μL pyrrole, and 3 mg CuPcTs were added and dissolved in 10 mL 2 wt% PVA aqueous 

solution. Then, 3 mL 1 M APS aqueous solution was added into the above solution, and the reaction 

system was carried out for 2 h. Subsequently, the obtained gel was immersed into deionized water to 

remove unreacted and generated ions, yielding the PPy/PVA interpenetrating hydrogel. The 

PPy/PVA hydrogel was further freeze-dried to obtain PPy/PVA interpenetrating aerogel.

Synthesis of the Si@PPy/PVA gel electrode. For the electrode preparation, 0.6 g commercial Si 

particle was added to the gel precursor solution and in situ immobilized within the PPy/PVA 

interpenetrating gel during the gelation processes. Subsequently, the as-prepared Si@PPy/PVA 

hybrid gel was spread on copper foil current collectors, and then the electrode foil was immersed 

into deionized water to remove unreacted/generated ions and then dried in a vacuum oven at 90 °C 

for 12 h.

Characterization. The crystalline phases and crystallinity of the as-prepared samples were 

examined by X-ray powder diffraction (XRD) with a Cu Kα radiation (Rigaku D/max 2500/PC). The 

morphology and microstructure of the products were investigated by scanning electron microscope 

(SEM, JSM-5610LV), and high-resolution transmission electron microscopy (HRTEM, JEOL JEM-

2010F, 200 kV) accompanied by energy-dispersive X-ray spectrometer (EDS, Thermo Fisher 

Scientific). Fourier transform infrared (FTIR) spectroscopy was conducted by a Bruker Tensor 27 
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spectrometer. Nitrogen adsorption/desorption tests were performed using a Micromeritics ASAP 

2460 analyzer, and Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods were 

used to measure surface area, pore volume, and pore size, respectively. Thermogravimetric analysis 

(TGA) was conducted on a thermal analyzer (NETZSCH STA) at a heating rate of 10 °C min-1 under 

air atmosphere.

Electrochemical measurement. The electrochemical performances toward lithium storage were 

tested using CR2025 coin cells, which were assembled in an Innovative Technology glove box (IL-

2GB). The as-obtained Si@PPy/PVA gel electrode was used as working electrode, and as a control 

sample, the conventional electrode was prepared by spreading aqueous slurry, containing 70 wt% 

commercial Si particle, 15 wt% carbon black (CB), and 15 wt% sodium carboxymethyl-cellulose 

(CMC), on copper foils. Only silicon component was considered as active material when calculating 

the specific capacities of the gel electrode and conventional electrode. The counter/reference 

electrode was lithium foil, and the electrolyte was 1 M LiPF6 in ethylene carbonate and dimethyl 

carbonate (1:1 in volume) containing 5 vol% fluoroethylene carbonate. The charge/discharge 

behaviors of the gel electrode and conventional electrode were investigated using a LANHE 

CT2001A battery tester (0.01-1.2 V, 0.1 A g-1 in the first cycle and 0.5 to 5 A g-1 in subsequent 

cycles). 
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Fig. S1 Photographs of the PPy hydrogel (a), PVA hydrogel (b), and their corresponding models 

(insets).

Synthesis of the PPy hydrogel: 152 μL pyrrole and 3 mg CuPcTs were dissolved in 11 mL 

deionized water. Then, 3 mL 1 M APS aqueous solution was added into the above solution, yielding 

the PPy hydrogel.

Synthesis of the PVA hydrogel: 1 mL 25% GA aqueous solution were added in 10 mL 2 wt% 

PVA aqueous solution. Then, 3 mL 1.5 M HCl aqueous solution was added into the above solution, 

yielding the PVA hydrogel.
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Fig. S2 The detailed reaction equations for the simultaneous and correlative gelation reactions of the 

PPy/PVA interpenetrating gel.
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Fig. S3 Photographs of the PPy/PVA interpenetrating hydrogel (a) and aerogel (b).
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Fig. S4 Nitrogen adsorption/desorption isotherms (a) and pore size distribution (b) of the PPy/PVA 

interpenetrating gel.
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Fig. S5 (a-c) TEM images and (d) STEM-EDS elemental mappings of the PPy gel.
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Fig. S6 (a-c) TEM images and (d) STEM-EDS elemental mappings of the PVA gel.
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Fig. S7 XRD pattern of the the PPy/PVA interpenetrating gel.
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Fig. S8 Synthetic diagram of the Si@PPy/PVA hybrid gel.
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Fig. S9 TGA curve of the Si@PPy/PVA hybrid gel.
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Fig. S10 Nitrogen adsorption/desorption isotherms (a) and pore size distribution (b) of the 

Si@PPy/PVA hybrid gel.



14

Fig. S11 HRTEM image of the Si@PPy/PVA hybrid gel.
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Fig. S12 The Si@PPy/PVA hybrid gel (a) has been spread on copper foil current collectors, yielding 

the Si@PPy/PVA gel electrode (b). XRD patterns of the Si@PPy/PVA hybrid gel (c) and 

Si@PPy/PVA gel electrode (d).

Fig. S12c and d reveal the XRD patterns of the Si@PPy/PVA hybrid gel and Si@PPy/PVA gel 

electrode. The characteristic diffraction peaks corresponding to cubic Si (JCPDS no. 27-1402) can 

be observed from both the patterns of the hybrid gel and gel electrode, whereas the PPy/PVA 

interpenetrating gel is amorphous in nature. Moreover, for the Si@PPy/PVA gel electrode, the 

additional diffraction peaks can be indexed to cubic Cu, which originate from copper foil current 

collectors.
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Fig. S13 The initial discharge and charge curves for the Si@PPy/PVA gel electrode in comparison 

with conventional electrode.



17

Fig. S14 Rate retention for the Si@PPy/PVA gel electrode in comparison with conventional 

electrode.
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Fig. S15 Top and cross-sectional SEM images of the Si/CB/CMC conventional electrode before 

cycling (a, b) and after 100 cycles (c, d).
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Fig. S16 TEM image and STEM-EDS elemental mappings of the Si@PPy/PVA gel electrode in a 

fully de-lithiated state (1.2 V vs. Li+/Li) after 100 cycles.
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Table S1 Comparison of the cycling stability and rate capability of the Si@PPy/PVA gel electrode 

with recently reported Si@polymer network electrodes.

Anode

materials

Cycling stability

(mAh g-1)

Rate capability

(mAh g-1)
Ref

Si@PPy/PVA gel electrode 1834 at 0.5 A g-1 (100 cycles)
1975 at 2 A g-1

1543 at 5 A g-1

This 

work

Si@CB/dextrin–GA electrode ~1430 at 0.42 A g-1 (100 cycles) ~1227 at 4.2 A g-1 1

Si@CB/p(AA70-co-nBA30)–

PEGDE electrode
1220 at 0.5A g-1 (100 cycles) ~1800 at 1 A g-1 2

Si@CB/PMDOPA electrode ~1580 at 0.84 A g-1 (100 cycles)
~1530 at 2.1 A g-1

~1400 at 4.2 A g-1
3

Si/PEDOT:PSS electrode 1950 at 1 A g-1 (100 cycles) ~1580 at 5 A g-1 4

Si@CB/CMC–MAH electrode ~1070 at 1 A g-1 (100 cycles) 535 at 2 A g-1 5

Si@CB/HPAM electrode 1639 at 0.358 A g-1 (100 cycles) NA 6

Si@CB/CS–GA electrode ~1940 at 0.5 A g-1 (100 cycles) ~1950 at 2 A g-1 7

Si@PANI/PAA electrode ~2350 at 0.84 A g-1 (100 cycles)
~1360 at 3.36 A g-1

~590 at 6.72 A g-1
8

Si@CB/PAA–SA electrode ~1005 at 0.2 A g-1 (100 cycles) 1632 at 0.8 A g-1 9

Si@CB/ppSA–ppCMC 

electrode
~2080 at 0.5 A g-1 (100 cycles)

1720 at 2 A g-1

1225 at 5 A g-1
10
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