Supplementary information

Three-Dimensional Construction of Electrode Materials Using TiC Nanoarrays Substrates for Highly Efficient Electrogeneration of Sulfate Radicals and Molecular Hydrogen in a Single Electrolysis Cell

Sung-Woo Park,†^a Eun-Tae Yun,†^a Hyun Jung Shin,^a Wooyul Kim,^b Jaesang Lee^a and Dong-Wan Kim^{*a}

^aSchool of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea

^bDepartment of Chemical and Biological Engineering, Sookmyung Women's University, Seoul 04310, South Korea

* Corresponding author. Tel.: +82 2 3290 4863; fax: +82 2 3290 5999; E-mail: dwkim1@korea.ac.kr (D.-W. Kim)

† These authors contributed equally to this article.

Cell configuration PDS generation Applied Ref. Volume PDS conc. Anode Cathode Electrolyte pН current density Time (dopant conc. / area) $(mol L^{-1})$ (L) $(mA cm^{-2})$ BDD@TiC NWs 44 (@ 4.5 V) 1.97 1 hour

0.05

0.08

0.15

0.1

1

0.16

25 (@ 4.5 V)

30

20

30

30

40

10

0.45

4 - 4.5

0.15 - 0.2

21.25

1.4 - 1.6

0.15

0.25 - 0.3

6.5

_

3

9

5

-

5

This

work

S1

S2

S3

S4

S5

S6

1 hour

1 hour

10

min.

5

hours

3

hours

5

hours

40

min.

Table S1. Comparison of PDS generation capability of BDD@TiC NWs with recently reported

 BDD anodes.

Ref.

(8,000 ppm / 1 cm²)

BDD

(8,000 ppm / 1 cm²) BDD

(8,000 ppm / 6 cm²)

BDD

 $(8,000 \text{ ppm} / 7.5 \text{ cm}^2)$

BDD

(-ppm / 7.065 cm²)

BDD

(-ppm / 12.5 cm²)

BDD

- ppm / 63 cm²)

BDD

(- ppm / 10 cm²)

S1. T. Niu, J. Cai, P. Shi and G. Zhao, Chem. Eng. J., 2020, 386, 123971.

0.1 M

Na₂SO₄

0.8 M

Na₂SO₄

0.1 M

Na₂SO₄

0.4 M

Na₂SO₄

0.1 M

Na₂SO₄

2.0 M

 H_2SO_4

0.03 M

Na₂SO₄

Platinum

Graphite

Platinum

Titanium

Platinum

Zirconium

Titanium

- S2. L. Chen, C. Lei, Z. Li, B. Yang, X. Zhang and L. Lei, Chemosphere, 2018, 210, 516-523.
- S3. F. Zhang, Z. Sun and J. Cui, RSC Adv., 2020, 10, 33928.
- S4. J. Cai. T. Niu, P. Shi and G. Zhao, Small, 2019, 15, 1900153.
- S5. J. Cai, M. Zhou, Y. Liu, A. Savall, K. G. Serrano, Chemosphere, 2018, 204, 163-169.

S6. Y.-U. Shin, H.-Y. Yoo, Y.-Y. Ahn, M. S. Kim, K. Lee, S. Yu, C. Lee, K. Cho, H.-I. Kim,J. Lee, *Appl. Catal. B-Environ.*, 2019, 254, 156-165.

Catalyst	Electrolyte	Overpotential (mV)	Current density (mA cm ⁻²)	Tafel slope (mV dec ⁻¹)	Pt in catalyst (wt. %)	Total Pt loading mass (mg cm ⁻²)	Ref.
Pt@C@TiC NAs	0.5 M H ₂ SO ₄	33.1	 - 10	31.2	-	0.029	This work
Pt@TiN NAs		39.7		38.6	0.087	-	S7
Pt/LSG		131		72	20 - 23	0.04	S8
Pt/def- WO ₃ @CFC		42		101	-	-	S9
Mo ₂ C@NC@ Pt		27		28	7.49	-	S10
$Pt/G_5-(MoS_2)_5$		33		23	19.1	0.027	S11

Table S2. Comparison of HER activity of Pt@C@TiC NWs with recently reported Pt-based composite catalysts.

Ref.

S7. C. Wang, H. Shi, H. Liu, J. Fu, D. Wei, W. Zeng, Q. Wan, G. Zhang and H. Duan, *Electrochim. Acta*, 2018, **292**, 727-735.

S8. P. Nayak, Q. Jiang, N. Kurra, X. Wang, U. Buttner and H. N. Alshareef, *J. Mater. Chem. A*, 2017, **5**, 20422.

S9. H. Tian, X. Cui, L. Zeng, L. Su, Y. Song and J. Shi, J. Mater. Chem. A, 2019, 7, 6285.

S10. J.-Q. Chi, J.-Y. Xie, W.-W. Zhang, B. Dong, J.-F. Qin, X.-Y. Zhang, J.-H. Lin, Y.-M. Chai and C.-G. Liu, *ACS Appl. Mater. Interfaces*, 2019, **11**, 4047-4056.

S11. Z. Gao, M. Li, J. Wang, J. Zhu, X. Zhao, H. Huang, J. Zhang, Y. Wu, Y. Fu and X. Wang, *Carbon*, 2018, **139**, 369-377.

Figure S1. SEM images of C@TiC NAs prepared using a) N_2 -purged acetone and b) air-

purged acetone.

Figure S2. a) XPS survey spectrum and b) deconvoluted B1s narrow spectrum of BDD@TiC NAs.

Figure S3. a) XRD pattern of flat BDD@Ti. b and c) Top-view and cross-section SEM images of BDD@Ti.

Figure S4. Magnified CV curves at initial OER step (current adjusted by ECSA).

Figure S5. Time-dependent concentration profiles of PDS measured by ion chromatography.

Figure S6. Degradation efficiencies for PFOA at each electrode ($[Na_2SO_4]_0 = 0.1 \text{ M}$, $[PFOA]_0 = 0.1 \text{ mM}$, [applied voltage] = 4.5 V).

Figure S7. LSV curves of each electrode measured in $0.1 \text{ M} \text{ Na}_2\text{SO}_4$ (pH = 6.5).

Figure S8. SEM images of Pt@C@TiC NAs_0.29.