Supporting Information

$Engineering \ Metallic \ MoS_2 \ Monolayers \ with \ Responsive \ Hydrogen$

Evolution Electrocatalytic Activities for Enzymatic Reaction Monitoring

Bang Lin Li,^{*} Cheng-Bin Gong, Wei Shen, Jing-Dong Peng, Hao Lin Zou, Hong Qun Luo^{*} and Nian Bing Li^{*}

Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.

*Correspondence and requests for materials should be addressed to B. L. Li (<u>chemlibl@swu.edu.cn</u>), H. Q. Luo (<u>luohq@swu.edu.cn</u>) and N. B. Li (<u>linb@swu.edu.cn</u>).

1. Experimental Procedures

1.1. Materials

Molybdenum disulfide (MoS₂ crystalline powder, < 2 μ m, 99%) was obtained from Sigma-Aldrich Co. (USA). Glucose oxidase (GOD, BC grade) was purchased from Sangon Biotech (Shanghai) Co., Ltd. Sodium cholate (98%), glucose, disodium hydrogen phosphate, and sodium dihydrogen phosphate were obtained from Aladdin Chemistry Co. Ltd. (Shanghai, China). N-butyllithium (n-BuLi, 2.5 mol/L) was obtained from Adamas Reagent, Ltd (Shanghai, China). Other chemicals were of analytical reagent grade and used without further purification. Ultrapure water (18.2 M Ω /cm) was utilized throughout the whole experiment. The carbon paper substrates were purchased from Toray Industries Co. (Japan).

1.2. Experimental Instrumentations

The apparatuses of Schlenk line for "one-pot" chemical exfoliation of MoS₂ were purchased from Tansoole Co. Ltd. (Shanghai, China). A KQ-400B ultrasonic bath (400 W, Kunshan Ultrasonic Instruments Co., Ltd., China) was adopted for the liquid-phase exfoliation of MoS₂ crystals. The absorption spectra were recorded on a UV-2450 UV-vis spectrophotomer (Shimadzu, Japan). The defects and crystal lattices characterizations were conducted using a Tecnai G2 T20 UTWIN (FEI, USA) transmission electron microscope (TEM). The morphologies of MoS₂ before and after the exfoliation were observed from the Regulus 8100 (Hitachi, Japan) scanning electron microscope (SEM). The thicknesses of layered MoS₂ were measured by atomic force microscope (AFM, Multi-Mode, Bruker). X-ray photoelectron spectra (XPS) results were analyzed using an ESCALAB 250Xi X-ray photoelectron spectroscope (Thermo Electron, USA). Electrochemical measurements were conducted on the CH660E electrochemical workstation (Chenhua, China). Inductively coupled plasma-mass spectra (ICP-MS) were employed for the quantitative analysis of Mo species concentrations (Agilent 7800ce, USA).

1.3. Liquid-Exfoliation of MoS₂

Briefly, a portion of 100.0 mL mixed aqueous dispersion, containing 5.0 mg/mL MoS₂ powders and 1.5 mg/mL sodium cholate, was treated with sonication (25° C, 20 h). The resultant dispersion was centrifuged (4000 rpm, 30 min) and yellow-green supernatant was collected to remove un-exfoliated bulk crystals and larger-size nanosheets.^{S1-S4} Subsequently, the separated supernatant was centrifuged at 10000 rpm for further 30 min, and the sediments of MoS₂ samples were isolated, respectively. Finally, the collected sediments were redispersed into ultrapure water for the preparation of stocking solution of liquid-phase exfoliated MoS₂ (LE-MoS₂) dispersion.

1.4. Characterization of Exfoliated MoS₂

The high-resolution transmission microscope was employed for the defects and phase identification of SL-MoS₂ nanosheets. A portion of 10 μ L purified samples was dropped on an ultrathin carbon film covered Cu mesh, which was subsequently treated with an infrared baking lamp for drying. In terms of AFM and SEM records, SL-MoS₂ aqueous dispersion was dropped on a mica substrate with a fresh surface and a clean and polishing silicon chip. After the incubation for 10 min in room temperature, the aqueous dispersion on the mica and silicon substrates was removed with the blowing of nitrogen gases in case the aggregation of nanosheets with naturally drying and the simples were tested with AFM and SEM without the further treatments, respectively. The XPS measurements were conducted with the samples of SL-MoS₂ and LE-MoS₂ on silicon substrates.

2. Supporting Tables and Figures

2.1. Table S1

Table S1. Comparison of glucose electrochemical sensors based on a series of modified materials.

Materials	Techniques	Enzyme	Detection range	LOD	Modified operation	Electrode Substrate	Ref.
PdCuPt nanocrystals	Chronoamper ometry	None	1-10 mM	1.29 μM	Drop- casting and drying	Glassy carbon electrode	[S5]
Poly aniline/carbo n nanotubes	Chronoamper ometry	None	0.05-0.3 mM	1.3 μΜ	Layer-by- layer assemble	Patterned Au substrate	[S6]
Nickel- niobium nanoglass	Chronoamper ometry	None	0.24-4 mM	0.1 μΜ	Electro- deposition	Glassy electrode	[S7]
PtNi NP-GO	Chronoamper ometry	None	0.5-35 mM	0.01 mM	Electro- deposition	Glassy carbon electrode	[S8]
MoS ₂ - Au@Pt nanohybrids	Chronoamper ometry	None	10-30000 μM	1.08 μM	Drop- casting and drying	Glassy carbon electrode	[S9]
Pt nanoparticles /polyaniline hydrogel	Chronoamper ometry	GOD	0.01 to 8 mM	0.7 μM	Polyreaction and electrodepos ition	Platinum electrode	[S10]

Porous	Chronoamper	GOD	1-18 mM	0.87	Self-	Indium tin	[S11]
graphene	ometry			mM	assemble	oxide	
aerogel							
Graphene/pla	Chronoamper	GOD	0-31.7	0.197	Rotated	Cylindrical	[S12]
tinum	ometry		mM	mM	inkjet	flexible	
nanoparticles					printing	electrode	
PDA/ZIF-8	Chronoamper	GOD	1-12000	0.333	Drop-	Glassy carbon	[S13]
	ometry		μΜ	μΜ	casting and	electrode	
					drying		
NiFe ₂ /carbon	Chronoamper	GOD	48.6-	2.7	Drop-	Glassy carbon	[S14]
nanocomposi	ometry		12500	μΜ	casting and	electrode	
tes			μΜ		drying		
Pt@BSA	Differential	GOD	0.05-	0.015	Self-	Au electrode	[S15]
nanocomposi	pulse		12.05	mM	assemble		
tes	voltammogra		mM				
	ms						
Prussian Blue	Chronoamper	GOD	2-10 mM	50	Printing	Screen-	[S16]
	ometry			μΜ		printed	
						electrode	
Graphene	Cyclic	GOD	3-9 mM	0.319	Drop-	Screen-	[S17]
oxide	voltammogra			4 mM	casting and	printed	
	ms				drying	electrode	
Metallic-	Linear sweep	GOD	0.2-100.0	0.053	Drop-	Carbon fiber	This
phase MoS ₂	voltammetry		mM	mM	casting and		work
nanosheets					drying		

2.2. Table S2

Table S2. The developed strategy was compared with the blood glucose monitor for glucose

 measurements in samples of serum and urine, respectively.

Samples ^a	es ^a GOD/SL-MoS ₂ /CPs			Blood glucose monitor			
	Measured	Added	Total	Measured	Added	Total	
	(mM)	(mM)	(mM)	(mM)	(mM)	(mM)	
Serum 1	5.4 ± 0.32	3.0	6.9 ± 0.22	5.2 ± 0.11	3.0	7.8 ± 0.41	
Serum 2	4.3 ± 0.24	6.0	10.1 ± 0.31	4.1 ± 0.25	6.0	10.3 ± 0.36	
Serum 3	5.1 ± 0.27	9.0	13.8 ± 0.15	4.8 ± 0.32	9.0	11.2 ± 0.28	
Urine 1	-	3.0	3.2 ± 0.14	-	3.0	2.7 ± 0.15	
Urine 2	-	6.0	5.4 ± 0.28	-	6.0	5.1 ± 0.33	
Urine 3	-	9.0	8.8 ± 0.43	-	9.0	7.3 ± 0.27	

^a n=5

2.3. Figure S1

Figure S1. The initial geometry of 1T Mo_7S_{17} (Left) and 2H Mo_7S_{17} (Right). Blue balls are Mo atoms, and yellow balls are S atoms.

2.4. Figure S2

Figure S2. SEM images of bulk MoS_2 crystals before (a) and after (b) the exfoliation treatment of the SL approach. As the lack of conductivity, the sample exhibited in panel (a) was treated with gold sputtering before SEM characterizations, whereas the sample in panel (b) was directly tested without gold sputtering.

2.5. Figure S3

Figure S3. The HRTEM (a) and selected area electron diffraction (b) images of SL-MoS $_2$ indicating the metallic phase.

2.6. Figure S4

Figure S4. Raman spectra of SL-MoS₂ along with LE-MoS₂ as a comparison. The spectra are taken with an excitation wavelength of 633 nm. All spectra contain the expected MoS_2 transitions: E^{1}_{2g} and A_{1g} . The SL-MoS₂ has the characteristic metallic peaks (J₁ and J₂ modes).

2.7. Figure S5

The conductivities of SL-MoS₂ and LE-MoS₂ were exploited, identifying the phase characteristics. After the modification, the electrochemical impedance spectroscopy (EIS) results of SL-MoS₂ and LE-MoS₂ were recorded in comparison to the pure electrode (Fig. S5). It was found that the SL-MoS₂ modified carbon paper (SL-MoS₂/CP) exhibited lower electrochemical impedance than both pure CP and LE-MoS₂/CP. The high conductivity of SL-MoS₂/CP promoted it to be the desired electrochemical catalyst in hydrogen evolution reaction.

Figure S5. EIS results of pure CP, LE-MoS₂/CP, and SL-MoS₂/CP. The applied potential is - 0.5 V.

2.8. Figure S6

The stability of HER performance of SL-MoS₂ was tested in comparison to that of LE-MoS₂ (Fig. S6). It was found that the even SL-MoS₂ exhibited superior electrocatalytic HER activities, the performance dropped when the testing time increased.^[S18] Nevertheless, in contrast to SL-MoS₂, LE-MoS₂ performed an increasing catalytic activity when the testing time increased at a range of 0 to 1 h, which subsequently trended to be stable.

Figure S6. Over-potential tests of the LE-MoS₂/CP and SL-MoS₂/CP are measured as a function of time to maintain a current density of 10 mA/cm².

2.9. Figure S7

Figure S7. The TEM images of SL-MoS₂ samples collected from the SL-MoS₂/CPs after the HER stability testing.

2.10. Figure S8

Figure S8. SEM images of the pristine CP consisting of carbon fibers (a) and SL-MoS₂ modified CPs (b and c). The samples were directly tested without gold sputtering.

2.11. Figure S9

Figure S9. The EDS mapping scan result of the SL-MoS₂ modified carbon fibers.

3. Supporting References

- [S1] B. L. Li, H. L. Zou, L. Lu, Y. Yang, J. L. Lei, H. Q. Luo and N. B. Li, Adv. Funct. Mater., 2015, 25, 3541-3550.
- [S2] B. L. Li, M. I. Setyawati, L. Chen, J. Xie, K. Ariga, C. T. Lim, S. Garaj and D. T. Leong, ACS Appl. Mater. Interfaces, 2017, 9, 15286-15296.
- [S3] B. L. Li, L. Y. Peng, H. L. Zou, L. J. Li, H. Q. Luo and N. B. Li, Small, 2018, 14, 1703560.
- [S4] B. L. Li, H. L. Zou, J. K. Tian, G. Chen, X. H. Wang, H. Duan, X. L. Li, Y. Shi, J. R.
 Chen, L. J. Li, J. L. Lei, H. Q. Luo and N. B. Li, *Nano Energy*, 2019, 60, 689-700.
- [S5] S. Fu, C. Zhu, J. Song, M. Engelhard, H. Xia, D. Du and Y. Lin, ACS Appl. Mater. Interfaces, 2016, 8, 22196-22200.
- [S6] S. Y. Oh, S. Y. Hong, Y. R. Jeong, J. Yun, H. Park, S. W. Jin, G. Lee, J. H. Oh, H. Lee, S. S. Lee and J. S. Ha, ACS Appl. Mater. Interfaces, 2018, 10, 13729-13740.
- [S7] S. Bag, A. Baksi, S. H. Nandam, D. Wang, X. Ye, J. Ghosh, T. Pradeep and H. Hahn, ACS Nano, 2020, 14, 5543-5552.
- [S8] H. Gao, F. Xiao, C. B. Chin and H. Duan, ACS Appl. Mater. Interfaces, 2011, 3, 3049-3057.
- [S9] S. Su, Z. Lu, J. Li, Q. Hao, W. Liu, C. Zhu, X. Shen, J. Shi and L. Wang, New J. Chem., 2018, 42, 6750-6755.
- [S10] D. Zhai, B. Liu, Y. Shi, L. Pan, Y. Wang, W. Li, R. Zhang and G. Yu, ACS Nano, 2013, 7, 3540-3546.
- [S11] J. Xu, K. Xu, Y. Han, D. Wang, X. Li, T. Hu, H. Yi and Z. Ni, Analyst, 2020, 145, 5141-5147.
- [S12] Z. Pu, J. Tu, R. Han, X. Zhang, J. Wu, C. Fang, H. Wu, X. Zhang, H. Yu and D. Li, *Lap Chip*, 2018, 18, 3570-3577.
- [S13] Y. Wang, C. Hou, Y. Zhang, F. He, M. Liu and X. Li, J. Mater. Chem. B, 2016, 4, 3695-3702.

- [S14] D. Xiang, L. Yin, J. Ma, E. Guo, Q. Li, Z. Li and K. Liu, *Analyst*, 2015, 140, 644-653.
- [S15] C. Hu, D. P. Yang, F. Zhu, F. Jiang, S. Shen and J. Zhang, ACS Appl. Mater. Interfaces, 2014, 6, 4170-4178.
- [S16] A. Martin, J. Kim, J. F. Kurniawan, J. R. Sempionatto, J. R. Moreto, G. Tang, A. S. Campbell, A. Shin, M. Y. Lee, X. Liu and J. Wang, ACS Sens., 2017, 2, 1860-1868.
- [S17] M. A. Akhtar, R. Batool, A. Hayat, D. Han, S. Riaz, S. U. Khan, M. Nasir, M. H. Nawaz and L. Niu, ACS Appl. Nano Mater., 2019, 2, 1589-1596.
- [S18] E. E. Benson, H. Zhang, S. A. Schuman, S. U. Nanayakkara, N. D. Bronstein, S. Ferrere, J. L. Blackburn, E. M. Miller, J. Am. Chem. Soc., 2018, 140, 441-450.