Electronic Supplementary Information

Single atom catalysts for boosting electrocatalytic and photoelectrocatalytic performances

Shijun Tong,^a Baihe Fu,^a Liyong Gan*^b and Zhonghai Zhang*^a

^a Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.

E-mail: zhzhang@chem.ecnu.edu.cn

^b Institute for Structure and Function and Department of Physics, Chongqing University, Chongqing, 400030, China.

E-mail: ganly@cqu.edu.cn

Table of Contents:

I. Additional Figures and Tables

Fig. S1 SEM images of NF.

Fig. S2 SEM images of (a) Ni/NF and (b) N-Ni/NF.

Fig. S3 Enlarged AC HAADF-STEM image of Pt single atoms in Fig. 1c.

Fig. S4 HRTEM image of Pt NPs/N-Ni/NF.

Fig. S5 Electrochemical HER performance of Ni/NF deposited at (a) different current density and (b) different time; N-Ni/NF annealed at (c) different time with (d) different amounts of $(NH_4)_2CO_3$, and (e) different temperatures; (f) Pt₁/N-Ni/NF deposited after different potential cycles.

Fig. S6 LSV curves for HER of NF, Ni/NF, N-Ni/NF, Pt NPs/N-Ni/NF, Pt₁/N-Ni/NF, and Pt/C in 1 M PBS with high current density.

Fig. S7 LSV curves for HER of Pt1/N-Ni/NF in acidic, neutral, and alkaline electrolytes.

Fig. S8 Fitted equivalent circuits of EIS data.

Fig. S9 AC HAADF-STEM image of Pt_1 /N-Ni/NF over 24h stability test.

Fig. S10 The theoretical and experimental values of H_2 for HER during 24 stability test of $Pt_1/N-Ni/NF$ at a constant current density of 10 mA cm⁻².

Fig. S11 PEC stability measurements on (a) pristine Cu₂O and on (b) Pt₁/N-Ni/Cu₂O at potential of 0 V vs RHE.

Fig. S12 Top view of modeled $Pt_1/N-Ni$ SAC with the Pt atom located above the (a) first and (b) second Ni layer.

The yellow, red, and pink balls represent Ni, N and Pt atoms, respectively.

Table R1. Equivalent circuit model for EIS plots fitting.

Table S2. EC HER performance of this work and other reported electrocatalysts in neutral media.

Table S3. PEC HER performance of this work and other reported Cu₂O based photocathodes.

II. Additional References

I. Additional Figures and Tables

Fig. S1 SEM images of NF.

Fig. S2 SEM images of (a) Ni/NF and (b) N-Ni/NF.

Fig. S3 Enlarged AC HAADF-STEM image of Pt single atoms in Fig. 1c.

Fig. S4 HRTEM image of Pt NPs/N-Ni/NF.

Fig. S5 Electrochemical HER performance of Ni/NF deposited at (a) different current density and (b) different time; N-Ni/NF annealed at (c) different time with (d) different amounts of $(NH_4)_2CO_3$, and (e) different temperatures; (f) Pt₁/N-Ni/NF deposited after different potential cycles.

Fig. S6 LSV curves for HER of NF, Ni/NF, N-Ni/NF, Pt NPs/N-Ni/NF, $Pt_1/N-Ni/NF$, and Pt/C in 1 M PBS with high current density.

Fig. S7 LSV curves for HER of $Pt_1/N-Ni/NF$ in acidic, neutral, and alkaline electrolytes.

Fig. S8 Fitted equivalent circuits of EIS data.

Fig. S9 AC HAADF-STEM image of Pt₁/N-Ni/NF over 24h stability test.

Fig. S10 The theoretical and experimental values of H_2 for HER during 24 stability test of $Pt_1/N-Ni/NF$ at a constant current density of 10 mA cm⁻².

Fig. S11 PEC stability measurements on (a) pristine Cu_2O and on (b) $Pt_1/N-Ni/Cu_2O$ at potential of 0 V vs RHE.

Fig. S12 Top view of modeled Pt_1/N -Ni SAC with the Pt atom located above the (a) first and (b) second Ni layer. The yellow, red, and pink balls represent Ni, N and Pt atoms, respectively.

Table R1. Equivalent circuit model for EIS plots fitting.

Sample	NF	Ni/NF	N-Ni/NF	Pt ₁ /N-Ni/NF
R _s (ohm/cm ²)	6.258	5.745	6.041	6.183
Q	0.000159	0.0001787	0.01507	0.1796
R _{ct} (ohm/cm ²)	817.2	71.16	34.06	3.313

R_s: solution resistance; Q: capacitance of the double layer; R_{ct}: charge transfer resistance.

Table S2. EC HER performance of this work and other reported electrocatalysts
in neutral media.

Electrocatalyst	electrolyte	^a η ₁₀ (mV)	Stability	References	
Ni _{0.33} Co _{0.67} S ₂	1.0 M PBS	72	20 h at 70 mV (^b η)	S1	
CoO/CoSe ₂	0.5 M PBS	337	9 h at ~ 337 mV or	S2	
			2000 cycles		
SiO ₂ /PPy NTs-CFs	1.0 M PBS	183	30 h at 200 mV(η)	S3	
Co-HNP/CC	1.0 M PBS	85	20 h at -150 mA/cm ²	S4	
FeO _x /FeP	1.0 M PBS	96	60 h at multi-	S5	

			potential(η)	
NiCoP _x	1.0 M PBS	63	30 h at -100 mV(η)	S6
N-Ni	1.0 M PBS	64	18 h at -20 mA/cm ²	S7
CrO _x /Cu-Ni/Cu foam	1.0 M PBS	48	24 h at 100 mV(η)	S8
Ni _{0.89} Co _{0.11} Se ₂ MNSN/NF	1.0 M PBS	82	40 h at 200 mV(η)	S9
Ni _{0.1} Co _{0.9} P	1.0 M PBS	125	20 h at -30 mA/cm ²	S10
CoMoS ₄ NTA/CC	1.0 M PBS	104	32 h at 142 mV(η)	S11
Mn-Co-P/Ti	1.0 M PBS	86	10 h at 96 mV(η) or 1000 cycles	S12
FeP/Ti	1.0 M PBS	102	16 h at -10 mA/cm ²	S13
CoW(OH) _x	1.0 M PBS	73.6	70 h at -20 mA/cm ²	S14
Ni-Mo-S/C	0.5 M PBS	200	30000 s	S15
GC Cu-Cu _x O-Pt-1	2.0 M PBS	35	100 h at 55 mV(η)	S16
CoP/CC	1.0 M PBS	106	1000 cycles	S17
MoP ₂ /MoP	1.0 M PBS	75	4000 cycles	S18
Ni/NiMoN array	0.5 M Na ₂ SO4 +0.5 M PBS	37	24 h at 37 mV(η)	S19
Mn-Ni-S/NF	1.0 M PBS	84	24 h at 180 mV(η) or 5000 cycles	S20
v-NiFe LDH	1.0 M PBS	87	1000 cycles	S21
Fe@N-CNT/IF	1.0 M PBS	130	10 h at multi- potential(η)	S22
Zn _{0.075} ,S-Co _{0.925} P NRCs/CP	1.0 M PBS	67	20 h at -10 mA/cm ² or 1000 cycles	S23
N-CoP/CC	1.0 M PBS	74	30 h at -10 mA/cm ² or 1000 cycles	S24
PEI@NiP ₂ -CC	1.0 M PBS	100	20 h at -10 mA/cm ²	S25
Ru@SC-CDs	1.0 M PBS	66	5000 cycles	S26
FePSe ₃ /NC	1.0 M PBS	140.1	24 h at -10 mA/cm ²	S27
Ru-RuO ₂ /CNT	1.0 M PBS	48	10 h at 40 mV(η) or 1500 cycles	S28
RuS _x /S-GO	1.0 M PBS	46	12 h for -50 mA/cm ²	S29
W-CoP NAs/CC	1.0 M PBS	102	36 h at 102 mV(η) or 2000 cycles	S30
NFP/C	1.0 M PBS	117	12 h at -10 mA/cm ²	S31
Co _{0.6} Fe _{0.4} P/CNT	1.0 M PBS	105	24 h for -10 mA/cm ² or 5000 ADT cycles	832
$(Fe_{0.048}Ni_{0.952})_2P$	1.0 M PBS	90	20 h for -100 mA/cm ² or 1000 cycles	S33
CoP/Co-MOF	1.0 M PBS	49	60000 s at -20 mA/cm ² or 2000	S34

			cycles		
VN@Ni ₃ N-Ni-	1.0 M PBS 85		30 h at 85 mV(η) or	S35	
6/CC			3000 cycles		
np-Co ₉ S ₄ P ₄	1.0 M PBS	87	20 h for -10 mA/cm ²	S36	
			120000 s for -10		
N-Co2P/CC	1.0 M PBS	42	mA/cm ² or 3000	S37	
			cycles		
Karst NF	1.0 M PBS	110	10 h at 210 mV(η)	S38	
CoS _x -(0.2-0.02)-12	1.0 M PBS	182	20 h at -10 mA/cm ²	S39	
Mn-NiO-Ni/Ni-F	1.0 M PBS	80	55 h at 80 mV(η)	S40	
	1.0 M PBS	124	20 h at 125 mV(η) or	S41	
$INI(S_{0.5}Se_{0.5})_2$			2000 cycles		
Cu _{0.08} Co _{0.92} P		01	20 h at -10 mA/cm ² or	542	
NAs/CP	1.0 M PBS	81	3000 cycles	542	
Ni _{0.85} Se@NC	1.0 M PBS	183	10 h at 183 mV(η) or	542	
			2000 cycles	545	
RhCoB	1.0 M PBS	113	10 h at -10 mA/cm ² or	544	
			2000 cycles	544	
3D RuCu NCs	0.01 M PBS	73	12 h for ~ -10 mA/cm ²	S 45	
			or 3000 cycles	545	
Fe-	1 0 M DDS	127	$2 h at 10 m \Lambda/am^2$	\$46	
(NiS ₂ /MoS ₂)/CNT	1.0 M PBS 12/		o ii at -10 iiiA/cm²	0+6	
Pt ₁ /N-Ni/NF	1.0 M PBS	33	24 h at -10 mA/cm ²	This work	

 a η_{10} = overpotential required to reach current density of -10 mA/cm². b η = overpotential.

Photoelectrode	Photocurrent density (mA cm ⁻²) at 0 V vs RHE	References
NiMo/Ga ₂ O ₃ /Cu ₂ O NWs	10	S47
RuOx/TiO ₂ /AZO/Cu ₂ O NWs	10	S48
Pt/TiO ₂ /AZO/Cu ₂ O	7.6	S49
TiO ₂ /Ga ₂ O ₃ /Cu ₂ O/CuSCN	6.4	S50
RuO ₂ /TiO ₂ /AZO/Cu ₂ O	5.16	S51
NiS/Cu ₂ O/Al	5.0	S52
Ti ₃ C ₂ T _x /Cu ₂ O	4.45	S53
Ni/CuO/Cu ₂ O	4.3	S54
Pt/TiO ₂ /AZO/Ga ₂ O ₃ /Cu ₂ O	4.0	S55
Cu ₂ MoS ₄ /NiO/Cu ₂ O	1.25	S56
Pt ₁ /N-Ni/NF	11.9	This work

Table S3. PEC HER performance of this work and other reported Cu2O basedphotocathodes.

II. Additional References

- (S1)Peng, Z.; Jia, D.; Al-Enizi, A. M.; Elzatahry, A. A.; Zheng, G. From Water Oxidation to Reduction: Homologous Ni–Co Based Nanowires as Complementary Water Splitting Electrocatalysts. *Adv. Energy Mater.* 2015, *5*, 1402031.
- (S2)Li, K.; Zhang, J.; Wu, R.; Yu, Y.; Zhang, B. Anchoring CoO Domains on CoSe₂ Nanobelts as Bifunctional Electrocatalysts for Overall Water Splitting in Neutral Media. Adv. Sci. 2016, 3, 1500426.
- (S3)Feng, J. X.; Han, X.; Ye, S. H.; Ouyang, G.; Tong, Y. X.; Li, G. R. Silica– Polypyrrole Hybrids as High-Performance Metal-Free Electrocatalysts for the Hydrogen Evolution Reaction in Neutral Media. *Angew. Chem. Int. Ed.* 2017, 56, 8120-8124.
- (S4)Liu, B.; Zhang, L.; Xiong, W.; Ma, M. Cobalt-Nanocrystal-Assembled Hollow Nanoparticles for Electrocatalytic Hydrogen Generation from Neutral-pH Water. *Angew. Chem. Int. Ed.* 2016, 55, 6725-6729.
- (S5)Huang, J.; Su, Y.; Zhang, Y.; Wu, W.; Wu, C.; Sun, Y.; Lu, R.; Zou, G.; Li, Y.; Xiong, J. FeO_x/FeP hybrid nanorods neutral hydrogen evolution electrocatalysis: insight into interface. *J. Mater. Chem. A* 2018, *6*, 9467-9472.
- (S6)Zhang, R.; Wang, X.; Yu, S.; Wen, T.; Zhu, X.; Yang, F.; Sun, X.; Wang, X.; Hu, W. Ternary NiCo₂P_x Nanowires as pH-Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction. *Adv. Mater.* 2017, *29*, 1605502.

- (S7)You, B.; Liu, X.; Hu, G.; Gul, S.; Yano, J.; Jiang, D.; Sun, Y. Universal Surface Engineering of Transition Metals for Superior Electrocatalytic Hydrogen Evolution in Neutral Water. J. Am. Chem. Soc. 2017, 139, 12283-12290.
- (S8)Dinh, C. T.; Jain, A.; García de Arquer, F. P.; Luna, P. D.; Li, J.; Wang, N.; Zheng, X.; Cai, J.; Gregory, B. Z.; Voznyy, O.; Zhang, B.; Liu, M.; Sinton, D.; Crumlin, E. J.; Sargent. E. H. Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. *Nat Energy* **2019**, *4*, 107-114.
- (S9)Liu, B.; Zhao, Y. F.; Peng, H. Q.; Zhang, Z. Y.; Sit, C. K.; Yuen, M. F.; Zhang, T. R.; Lee, C. S.; Zhang. W. J. Nickel–Cobalt Diselenide 3D Mesoporous Nanosheet Networks Supported on Ni Foam: An All-pH Highly Efficient Integrated Electrocatalyst for Hydrogen Evolution. *Adv. Mater.* 2017, 29, 1606521.
- (S10) Wu, R.; Xiao, B.; Gao, Q.; Zheng, Y. R.; Zheng, X. S.; Zhu, J. F.; Gao, M. R.; Yu, S. H. A Janus Nickel Cobalt Phosphide Catalyst for High-Efficiency NeutralpH Water Splitting. *Angew. Chem. Int. Ed.* **2018**, *130*, 15671-15675.
- (S11) Wang, W.; Ren, X.; Hao, S.; Liu, Z.; Xie, F.; Yao, Y.; Asiri, A. M.; Chen, L.; Sun. X. Self-Templating Construction of Hollow Amorphous CoMoS₄ Nanotube Array towards Efficient Hydrogen Evolution Electrocatalysis at Neutral pH. *Chem. Eur. J.* 2017, 23, 12718-12723.
- (S12) Liu, T.; Ma, X.; Liu, D.; Hao, S.; Du, G.; Ma, Y.; Asiri, A. M.; Sun, X.; Chen, L. Mn Doping of CoP Nanosheets Array: An Efficient Electrocatalyst for Hydrogen Evolution Reaction with Enhanced Activity at All pH Values. *ACS catal.* 2017, 7, 98-102.
- (S13) Callejas, J. F.; McEnaney, J. M.; Read, C. G.; Crompton, J. C.; Biacchi, A. J.; Popczun, E. J.; Gordon, T. R.; Lewis, N. S.; Schaak, R. E. Electrocatalytic and Photocatalytic Hydrogen Production from Acidic and Neutral-pH Aqueous Solutions Using Iron Phosphide Nanoparticles. *ACS Nano* 2014, *8*, 11101-11107.
- (S14) Zhang, L.; Liu, P. F.; Li, Y. H.; Wang, C. W.; Zu, M. Y.; Fu, H. Q.; Yang, X. H.; Yang, H. G. Accelerating Neutral Hydrogen Evolution with Tungsten Modulated Amorphous Metal Hydroxides. *ACS Catal.* 2018, *8*, 5200-5205.
- (S15) Miao, J.; Xiao, F. X.; Yang, H. B.; Khoo, S. Y.; Chen, J.; Fan, Z.; Hsu, Y. Y.; Chen, H. M.; Zhang, H.; Liu, B. Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: A flexible electrode for efficient hydrogen generation in neutral electrolyte. *Sci. Adv.* 2015, *1*, e1500259.
- (S16) Zhang, P.; Wang, M.; Chen, H.; Liang, Y.; Sun, J.; Sun, L. A Cu-Based Nanoparticulate Film as Super-Active and Robust Catalyst Surpasses Pt for Electrochemical H₂ Production from Neutral and Weak Acidic Aqueous Solutions. *Adv. Energy Mater.* 2016, 6, 1502319.

- (S17) Tian, J.; Liu, Q.; Asiri, A. M.; Sun, X. Self-Supported Nanoporous Cobalt Phosphide Nanowire Arrays: An Efficient 3D Hydrogen-Evolving Cathode over the Wide Range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587-7590.
- (S18) Xie, X.; Song, M.; Wang, L.; Engelhard, M. H.; Luo, L.; Miller, A.; Zhang, Y.; Du, L.; Pan, H.; Nie, Z.; Chu, Y.; Estevez, L.; Wei, Z.; Liu, H.; Wang, C.; Li, D.; Shao, Y. Electrocatalytic Hydrogen Evolution in Neutral pH Solutions: Dual-Phase Synergy. ACS Catal. 2019, 9, 8712-8718.
- (S19) Shang, L.; Zhao, Y.; Kong, X. Y.; Shi, R.; Waterhouse, G. I. N.; Wen, L.; Zhang, T. Underwater superaerophobic Ni nanoparticle-decorated nickelmolybdenum nitride nanowire arrays for hydrogen evolution in neutral media. *Nano Energy* 2020, 78, 105375.
- (S20) Zeng, L.; Liu, Z.; Sun, K.; Chen, Y.; Zhao, J.; Chen, Y.; Pan, Y.; Lu, Y.; Liu, Y.; Liu, C. Multiple modulations of pyrite nickel sulfides via metal heteroatom doping engineering for boosting alkaline and neutral hydrogen evolution. *J. Mater. Chem. A* 2019, 7, 25628-25640.
- (S21) Yuan, Z.; Bak, S. M.; Li, P.; Jia, Y.; Zheng, L.; Zhou, Y.; Bai, L.; Hu, E.; Yang, X. Q.; Cai, Z.; Sun, Y.; Sun, X. Activating Layered Double Hydroxide with Multivacancies by Memory Effect for Energy-Efficient Hydrogen Production at Neutral pH. ACS Energy Lett. 2019, 4, 1412-1418.
- (S22) Yu, J.; Li, G.; Liu, H.; Zeng, L.; Zhao, L.; Jia, J.; Zhang, M.; Zhou, W.; Liu, H.; Hu, Y. Electrochemical Flocculation Integrated Hydrogen Evolution Reaction of Fe@N-Doped Carbon Nanotubes on Iron Foam for Ultralow Voltage Electrolysis in Neutral Media. *Adv. Sci.* 2019, *6*, 1901458.
- (S23) Yan, L.; Zhang, B.; Zhu, J.; Liu, Z.; Zhang, H.; Li, Y. Callistemon-like Zn and S codoped CoP nanorod clusters as highly efficient electrocatalysts for neutral-pH overall water splitting. *J. Mater. Chem. A* 2019, 7, 22453-22462.
- (S24) Men, Y.; Li, P.; Yang, F.; Cheng, G.; Chen, S.; Luo, W. Nitrogen-doped CoP as robust electrocatalyst for high-efficiency pH universal hydrogen evolution reaction. *Appl. Catal. B: Environ.* **2019**, *253*, 21-27.
- (S25) Ding, Y.; Miao, B. Q.; Jiang, Y. C.; Yao, H. C.; Li, X. F.; Chen, Y. Polyethylenimine-modified nickel phosphide nanosheets: interfacial protons boost the hydrogen evolution reaction. *J. Mater. Chem. A* 2019, *7*, 13770-13776.
- (S26) Liu, Y.; Yang, Y.; Peng, Z.; Liu, Z.; Chen, Z.; Shang, L.; Lu, S.; Zhang, T. Self-crosslinking carbon dots loaded ruthenium dots as an efficient and superstable hydrogen production electrocatalyst at all pH values. *Nano Energy* 2019, 65, 104023.

- (S27) Yu, J.; Li, W. J.; Zhang, H.; Zhou, F.; Li, R.; Xu, C. Y.; Zhou, L.; Zhong, H.; Wang, J. Metallic FePSe₃ nanoparticles anchored on N-doped carbon framework for All-pH hydrogen evolution reaction. *Nano Energy* **2019**, *57*, 222-229.
- (S28) Zhang, M.; Chen, J.; Li, H.; Cai, P.; Li, Y.; Wen, Z. Ru-RuO₂/CNT hybrids as high-activity pH-universal electrocatalysts for water splitting within 0.73 V in an asymmetric-electrolyte electrolyzer. *Nano Energy* 2019, *61*, 576-583.
- (S29) Li, P.; Duan, X.; Wang, S.; Zheng, L.; Li, Y.; Duan, H.; Kuang, Y.; Sun, X. Amorphous Ruthenium-Sulfide with Isolated Catalytic Sites for Pt-Like Electrocatalytic Hydrogen Production Over Whole pH Range. *Small* 2019, 15, 1904043.
- (S30) Wang, X.; Chen, Y.; Yu, B.; Wang, Z.; Wang, H.; Sun, B.; Li, W.; Yang, D.; Zhang, W. Hierarchically Porous W-Doped CoP Nanoflake Arrays as Highly Efficient and Stable Electrocatalyst for pH-Universal Hydrogen Evolution. *Small* 2019, 15, 1902613.
- (S31) Lu, X. F.; Yu, L.; Lou, X. W. D. Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts. *Sci. Adv.* **2019**, *5*, eaav6009.
- (S32) Zhang, X.; Zhang, X.; Xu, H.; Wu, Z.; Wang, H.; Liang, Y. Iron-Doped Cobalt Monophosphide Nanosheet/Carbon Nanotube Hybrids as Active and Stable Electrocatalysts for Water Splitting. *Adv. Funct. Mater.* 2017, 27, 1606635.
- (S33) Zhang, W.; Zou, Y.; Liu, H.; Chen, S.; Wang, X.; Zhang, H.; She, X.; Yang, D. Single-crystalline (Fe_xNi_{1-x})₂P nanosheets with dominant {011⁻1⁻} facets: Efficient electrocatalysts for hydrogen evolution reaction at all pH values. *Nano Energy* 2019, *56*, 813-822.
- (S34) Liu, T.; Li, P.; Yao, N.; Cheng, G.; Chen, S.; Luo, W.; Yin, Y. CoP-Doped MOF-Based Electrocatalyst for pH-Universal Hydrogen Evolution Reaction. *Angew. Chem. Int. Ed.* 2019, 131, 4727-4732.
- (S35) Dong, X.; Yan, H.; Jiao, Y.; Guo, D.; Wu, A.; Yang, G.; Shi, X.; Tian, C.; Fu, H. 3D hierarchical V–Ni-based nitride heterostructure as a highly efficient pH-universal electrocatalyst for the hydrogen evolution reaction. *J. Mater. Chem. A* 2019, 7, 15823-15830.
- (S36) Tan, Y.; Luo, M.; Liu, P.; Cheng, C.; Han, J.; Watanabe, K.; Chen, M. Three-Dimensional Nanoporous Co₉S₄P₄ Pentlandite as a Bifunctional Electrocatalyst for Overall Neutral Water Splitting. ACS Appl. Mater. Interfaces 2019, 11, 3880-3888.
- (S37) Men, Y.; Li, P.; Zhou, J.; Cheng, G.; Chen, S.; Luo, W. Tailoring the Electronic Structure of Co₂P by N Doping for Boosting Hydrogen Evolution Reaction at All pH Values. ACS Catal. 2019, 9, 3744-3752.

- (S38) Gao, X.; Chen, Y.; Sun, T.; Huang, J.; Zhang, W.; Wang, Q.; Cao, R. Karst landform-featured monolithic electrode for water electrolysis in neutral media. *Energy Environ. Sci.* 2020, 13, 174-182.
- (S39) He, W.; Ifraemov, R.; Raslin, A.; Hod, I. Room-Temperature Electrochemical Conversion of Metal–Organic Frameworks into Porous Amorphous Metal Sulfides with Tailored Composition and Hydrogen Evolution Activity. *Adv. Funct. Mater.* 2018, *28*, 1707244.
- (S40) Lu, X.; Pan, J.; Lovell, E.; Tan, T. H.; Ng, Y. H.; Amal, R. A sea-change: manganese doped nickel/nickel oxide electrocatalysts for hydrogen generation from seawater. *Energy Environ. Sci.* 2018, 11, 1898-1910.
- (S41) Zeng, L.; Sun, K.; Chen, Y.; Liu, Z.; Chen, Y.; Pan, Y.; Zhao, R.; Liu, Y.; Liu, C. Neutral-pH overall water splitting catalyzed efficiently by a hollow and porous structured ternary nickel sulfoselenide electrocatalyst. *J. Mater. Chem. A* 2019, *7*, 16793-16802.
- (S42) Yan, L.; Zhang, B.; Zhu, J.; Li, Y.; Tsiakaras, P.; Shen, P. K. Electronic modulation of cobalt phosphide nanosheet arrays via copper doping for highly efficient neutral-pH overall water splitting. *Appl. Catal. B: Environ.* 2020, 265, 118555.
- (S43) Huang, Z.; Xu, B.; Li, Z.; Ren, J.; Mei, H.; Liu, Z.; Xie, D.; Zhang, H.; Dai, F.; Wang, R.; Sun, D. Accurately Regulating the Electronic Structure of Ni_xSe_y@NC Core–Shell Nanohybrids through Controllable Selenization of a Ni-MOF for pH-Universal Hydrogen Evolution Reaction. *Small* **2020**, *16*, 2004231.
- (S44) Deng, K.; Ren, T.; Xu, Y.; Liu, S.; Dai, Z.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Transition metal M (M = Co, Ni, and Fe) and boron co-modulation in Rh-based aerogels for highly efficient and pH-universal hydrogen evolution electrocatalysis. *J. Mater. Chem. A* 2020, *8*, 5595-5600.
- (S45) Cao, D.; Wang, J.; Xu, H.; Cheng, D. Growth of Highly Active Amorphous RuCu Nanosheets on Cu Nanotubes for the Hydrogen Evolution Reaction in Wide pH Values. *Small* 2020, *16*, 2000924.
- (S46) Li, C.; Liu, M.; Ding, H.; He, L.; Wang, E.; Wang, B.; Fan, S.; Liu, K. A lightly Fe-doped (NiS₂/MoS₂)/carbon nanotube hybrid electrocatalyst film with laserdrilled micropores for stabilized overall water splitting and pH-universal hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 17527-17536.
- (S47) Pan, L.; Kim, J. H.; Mayer, M. T.; Son, M. K.; Ummadisingu, A.; Lee, J. S.; Hagfeldt, A.; Luo, J.; Grätzel, M. Boosting the performance of Cu₂O photocathodes for unassisted solar water splitting devices. *Nat. Catal.* **2018**, *1*, 412-420.

- (S48) Luo, J.; Steier, L.; Son, M. K.; Schreier, M.; Mayer, M. T.; Grätzel, M. Cu₂O Nanowire Photocathodes for Efficient and Durable Solar Water Splitting. *Nano. Lett.* 2016, *16*, 1848-1857.
- (S49) Paracchino, A.; Laporte, V.; Sivula, K.; Grätzel, M.; Thimsen, E. Highly active oxide photocathode for photoelectrochemical water reduction. *Nat. Mater.* 2011, 10, 456-461.
- (S50) Pan, L.; Liu, Y.; Yao, L.; Ren, D.; Sivula, K.; Grätzel, M.; Hagfeldt, A. Cu₂O photocathodes with band-tail states assisted hole transport for standalone solar water splitting. *Nat. Commun.* 2020, *11*, 318.
- (S51) Chen, D.; Liu, Z.; Guo, Z.; Yan, W.; Ruan, M. Decorating Cu₂O photocathode with noble-metal-free Al and NiS cocatalysts for efficient photoelectrochemical water splitting by light harvesting management and charge separation design. *Chem. Eng. J.* 2020, 381, 122655.
- (S52) Tilley, S. D.; Schreier, M.; Azevedo, J.; Stefik, M.; Graetzel, M. Ruthenium Oxide Hydrogen Evolution Catalysis on Composite Cuprous Oxide Water-Splitting Photocathodes. *Adv. Funct. Mater.* 2014, 24, 303-311.
- (S53) Fu, X.; Chang, H.; Shang, Z.; Liu, P.; Liu, J.; Luo, H. Three-dimensional Cu₂O nanorods modified by hydrogen treated Ti₃C₂T_X MXene with enriched oxygen vacancies as a photocathode and a tandem cell for unassisted solar water splitting. *Chem. Eng. J.* **2020**, *381*, 122001.
- (S54) Dubale, A. A.; Pan, C. J.; Tamirat, A. G.; Chen, H. M.; Su, W. N.; Chen, C. H.; Rick, J.; Ayele, D. W.; Aragaw, B. A.; Lee, J. F.; Yang, Y. W.; Hwang, B. J. Heterostructured Cu₂O/CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical water reduction. *J. Mater. Chem. A* 2015, *3*, 12482-12499.
- (S55) Wang, Y. C.; Qin, C.; Lou, Z. R.; Lu, Y. F.; Zhu, L. P. Cu₂O photocathodes for unassisted solar water-splitting devices enabled by noblemetal cocatalysts simultaneously as hydrogen evolution catalysts and protection layers. *Nanotechnology* **2019**, *30*, 495407.
- (S56) Yang, C.; Tran, P. D.; Boix, P. P.; Bassi, P. S.; Yantara, N.; Wong, L. H.; Barber, J. Engineering a Cu₂O/NiO/Cu₂MoS₄ hybrid photocathode for H₂ generation in water. *Nanoscale* **2014**, *6*, 6506-6510.