Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Dual Modulation of Lattice Strain and Charge Polarization Induced by Co(OH)₂/Ni(OH)₂

Interfaces for Efficient Oxygen Evolution Catalysis

Lin-Fei Gu, Cheng-Fei Li, Jia-Wei Zhao, Ling-Jie Xie, Jin-Qi Wu, Qian Ren and Gao-Ren Li*

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China

E-mail: ligaoren@mail.sysu.edu.cn

Figure S1. SEM images of Co(OH)₂ NSs@NF.

Figure S2. SEM images of Ni(OH)₂ NSs@NF.

Figure S3. TEM images of Co(OH)₂ NSs@NF.

Figure S4. TEM images of Ni(OH)₂ NSs@NF.

Figure S5. XRD patterns of (a) Co(OH)₂ NSs@NF and (b) Ni(OH)₂ NSs@NF.

Figure S6. EDS spectrum of $Co(OH)_2/Ni(OH)_2$ NSs (the sample is peeled off from the Nickel Foamed to reduce the influence of nickel in the substrate).

Figure S7. (a) HRTEM images and (b) its partial enlarged view of pure $Co(OH)_2$ nanosheets; (c) the line scans of the areas A in HRTEM image in (b) marked with white rectangles, which indicates a lattice fringe spacing of 0.275 nm, corresponding to $Co(OH)_2$ (100) (PDF#30-0443).

Figure S8. EDS spectrum of Co(OH)₂ NSs@NF.

Figure S9. The strain tensor maps of (a) x direction (ε_{xx}), (b) y direction (ε_{yy}) and (c) xy shear (ε_{xy}) generated from the Figure S7a using geometric phase analysis.

Figure S10. The projected density-of-states of Co d orbitals of Co(OH)₂/Ni(OH)₂ and Co(OH)₂.

Figure S11. XPS spectra of (a) survey, (b) O 1s of Co(OH)₂ NSs@NF, Ni(OH)₂ NSs@NF and Co(OH)₂/Ni(OH)₂ NSs@NF.

Figure S12. XPS spectra of (a) Co 2p_{1/2}, (b) Ni 2p_{1/2} for Co(OH)₂ NSs@NF and Co(OH)₂/Ni(OH)₂ NSs@NF.

Figure S13. Contact angle measurements of samples NF, Co(OH)₂ NSs@NF, Ni(OH)₂ NSs@NF and Co(OH)₂/Ni(OH)₂ NSs@NF.

Figure S14. The OER polarization curves of Co(OH)₂/Ni(OH)₂ NSs@NF, Co(OH)₂ NSs@NF, and Ni(OH)₂ NSs@NF

Figure S15. (a) OER polarization curves of $Co(OH)_2/Ni(OH)_2$ NSs@NF based on different ratios of Co^{2+}/Ac^- (Ac⁻ represents acetate), (b) the partial enlarged view of (a) at 60 mA cm⁻².

Figure S16. CVs of (a) Ni(OH)₂ NSs@NF, (b) Co(OH)₂ NSs@NF, (c) Co(OH)₂/Ni(OH)₂ NSs@NF in the range of

 $0.88 \sim 0.98$ V vs. RHE, measured in 1.0 M KOH solution, respectively.

Figure S17. Polarization curves of before and after 24 h durability test at 20 mA cm⁻² for Co(OH)₂/Ni(OH)₂ NSs@NF.

Figure S18. Galvanostatic measurements of Co(OH)₂/Ni(OH)₂ NSs@NF, Co(OH)₂ NSs@NF and Ni(OH)₂ NSs@NF at the current density of 20 mA cm⁻².

Figure S19. SEM images with different magnifications of Co(OH)₂/Ni(OH)₂ NSs@NF after OER at 20 mA cm⁻² for 24 h.

Figure S20. TEM images with different magnifications of Co(OH)₂/Ni(OH)₂ NSs@NF after OER at 20 mA cm⁻² for

24 h.

Figure S21. EDS spectrum of Co(OH)₂/Ni(OH)₂ NSs after OER at 20 mA cm⁻² for 24 h.

η@J Tafel slope Catalysts Reference $(mV@mA cm^{-2})$ $(mV dec^{-1})$ Co(OH)₂/Ni(OH)₂ NSs 270@20 78 This work NiCo LDHs 367@10 40 Nano Lett. 2015, 15, 1421 Angew. Chem. Int. Ed. 2017, 129, NiCoP/C nanoboxes 330@10 96 3955 NiCo@NiCoO2/C Adv. Mater. 2018, 30, 366@20 84 **PMRAs** 1705442. Mo-NiCo₂O₄/Co_{5.47}N/NF 310@50 55 Small. 2020, 16, 1906775 J. Mater. Chem. A. NiCo2O4/CoMoO4/NF 390@50 102 2018, 6, 16950. Co₃O₄/NiCo₂O₄ 340@10 88 J. Am. Chem. Soc. 2015, 137, 5590 NiO/Co₃O₄ microcubes 290@10 73 Chem. Commun. 2019, 55, 6515 J. Mater. Chem. A. 2018, 6, NiCo₂O₄/CNTs 67 503@10 7420 Adv. Funct. Mater. Co₄Ni₁-P 390@50 64 2017, 27, 1703455. ACS Appl. Mater. Interfaces. 2020, CoNi-S/NS-rGO-550 290@10 80 12, 40186

Table S1. Comparisons of representative cobalt-based and nickel-based OER electrocatalysts in alkaline

 electrolyte (1.0 M KOH solution).

η: Overpotential (mV);

J: Current density (mA cm⁻²);

PMRAs: Porous microrod arrays;

NF: Nickel foam;

CNTs: Carbon nanotubes;

rGO: Reduced graphene oxide.