Supporting Information

Boosting the Performance of MA-free Inverted Perovskite Solar Cells via Multifunctional Ion Liquid

Dongyang Li^{a,b}, Yulan Huang^b, Guoliang Wang^b, Qing Lian^b, Run Shi^b, Luozheng Zhang^b, Xingfu Wang^a, Fangliang Gao^a, Weiguang Kong^{d,e,*}, Baomin Xu^b, Chun Cheng^{b,c*} and Shuti Li^{a,*}

a Guangdong Engineering Research Center of Optoelectronic Functional Materials and Devices, South China Normal University, Guangzhou, 510631, China.

b Department of Materials Science and Engineering, Southern University of Science
 and Technology (SUSTech), Shenzhen, 518055, China.

c Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen 518055, China.

d Hebei Key Laboratory of Optic-electronic Information and Materials and National-Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, China.

e State Key Laboratory of Photovoltaic Materials & Technology, Yingli Solar, Baoding, 071051, China.

Corresponding Authors: <u>kongwg@hbu.edu.cn</u> (W.K.); chengc@sustech.edu.cn (C.C.); lishuti@scnu.edu.cn (S.L.)

Perovskite	Structure	Voc	Jsc	FF	PCE	Stability
$Cs_{0.05}FA_{0.95}PbI_3$	ITO/PTAA/PFN-	1.05	25.1	0.75	19.8 ¹	N/A
(bandgap ~1.5 eV)	P ₂ /perovskite/LiF/C ₆₀ /BCP/Cu					
$Cs_{0.03}FA_{0.97}PbI_3$	ITO/PTAA/perovskite/	1.06	24.7	0.72	18.2 ²	N/A
(bandgap ~1.5 eV)	PCBM/C ₆₀ /BCP/Ag					
$Cs_{0.06}FA_{0.94}PbI_3$	ITO/PTAA/perovskite/	1.07	23.1	0.75	18.5 ³	N/A
(bandgap ~1.5 eV)	PCBM/AZO/SnO ₂ /Ag					
$Cs_{0.15}FA_{0.85}PbI_{2.7}Br_{0.3}$	ITO/NiOx/CuGaO2/perovskite/	1.11	23.19	0.80	20.7 ⁴	85% under
(bandgap ~1.58 eV)	PCBM/BCP/Ag					85°C 1000h
$Cs_{0.15}FA_{0.85}PbI_{2.85}Br_{0.15}$	ITO/NiMgLiO/perovskite/	1.08	23.23	0.80	20.0 ⁵	90% under
(bandgap ~1.56 eV)	PCBM/BCP/Ag					85°C 500h
$Cs_{0.15}FA_{0.85}PbI_{2.7}Br_{0.3}$	ITO/PTAA/PFN-	1.10	22.92	0.81	20.3 ⁶	80% under
(bandgap ~1.58 eV)	P2/perovskite/LiF/C60/BCP/Cu					MPP 230h
$Cs_{0.17}FA_{0.83}PbI_{2.4}Br_{0.6}$	ITO/PTAA/PFN-Br/perovskite/	1.15	22.58	0.81	21.17	91% under
(bandgap ~1.61 eV)	bFPI/C ₆₀ /BCP/Cu					85°C 500h
$Cs_{0.17}FA_{0.83}Pb(I_{1-x}Br_x)_3$	ITO/Poly-TPD	1.12	22.8	0.79	20.18	80% under
(bandgap ~1.66 eV)	/perovskite/PCBM/BCP/Cr/Au					60°C1010h
$Cs_{0.15}FA_{0.85}PbI_3$	ITO/NiOx/perovskite/PCBM/	1.10	23.54	0.80	20.7 ⁹	95% under
(bandgap ~1.54 eV)	BCP/Cu					1000h
$Cs_{0.05}FA_{0.95}PbI_3$	ITO/PTAA/perovskite/C60/BCP/C	1.09	23.54	0.83	21.25	94% under
(bandgap ~1.53 eV)	u					85°C 500h
						(This work)

Table S1. Recent development on MA-free inverted perovskite solar cells

Figure S1 Forward-Reverse Scan of PSCs

Figure S2 Cross-sectional SEM for control (a) and 0.5% NDAPBF4 (b) perovskite film

Figure S3 XRD patterns for NDAPBF₄ concentration from 0% - 2%

Figure S4 XRD patterns from 40° to 41°

Figure S5. Tauc plot of perovskite films

Figure S6. KPFM images of control films

Figure S7 XPS spectra of I 3d.

Figure S8 EDS mapping and TEM spectra of 0.5% NDAPBF₄ device

Figure S9 a) Element distribution derived for EDS mapping of 0.5% NDAPBF₄ device b) Element distribution of F

Figure S10 PL spectra for NDAPBF₄ concentration from 0% to 2%

Figure S11 Mott-Schottky plots for control and 0.5% NDAPBF₄ devices

Figure S12. a-b) Pseudo-color maps of control (a) and NDAPBF₄ treated (b) films derived by TA

Figure S13 XRD before and annealed at 250°C 3 min for control and 0.5% NDAPBF₄ devices

Figure S14 Operation stability of a) Voc b)Jsc c)FF d)PCE for control and 0.5% NDAPBF₄ devices

Figure S15 XRD before and after exposing to 60%-75% humidity for 24h for control and 0.5% NDAPBF₄ devices

Reference:

(1) Stolterfoht, M.; Wolff, C. M.; Márquez, J. A.; Zhang, S.; Hages, C. J.; Rothhardt, D.; Albrecht, S.; Burn, P. L.; Meredith, P.; Unold, T.; Neher, D. Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. *Nature Energy* **2018**, *3* (10), 847-854, DOI: 10.1038/s41560-018-0219-8.

(2) Thote, A.; Jeon, I.; Lee, J.-W.; Seo, S.; Lin, H.-S.; Yang, Y.; Daiguji, H.; Maruyama, S.; Matsuo, Y. Stable and Reproducible 2D/3D Formamidinium–Lead–Iodide Perovskite Solar Cells. *ACS Applied Energy Materials* **2019**, *2* (4), 2486-2493, DOI: 10.1021/acsaem.8b01964.

(3) Brinkmann, K. O.; He, J.; Schubert, F.; Malerczyk, J.; Kreusel, C.; van Gen Hassend, F.; Weber, S.; Song, J.; Qu, J.; Riedl, T. Extremely Robust Gas-Quenching Deposition of Halide Perovskites on Top of Hydrophobic Hole Transport Materials for Inverted (p-i-n) Solar Cells by Targeting the Precursor Wetting Issue. *ACS Appl Mater Interfaces* 2019, *11* (43), 40172-40179, DOI: 10.1021/acsami.9b15867.
(4) Chen, Y.; Yang, Z.; Jia, X.; Wu, Y.; Yuan, N.; Ding, J.; Zhang, W.-H.; Liu, S. Thermally stable methylammonium-free inverted perovskite solar cells with Zn2+ doped CuGaO2 as efficient mesoporous hole-transporting layer. *Nano Energy* 2019, *61*, 148-157, DOI: 10.1016/j.nanoen.2019.04.042.

(5) Zhu, H.; Wu, S.; Yao, J.; Chen, R.; Pan, M.; Chen, W.; Zhou, J.; Zhang, W.; Wang, T.; Chen, W. An effective surface modification strategy with high reproducibility for simultaneously improving efficiency and stability of inverted MA-free perovskite solar cells. *Journal of Materials Chemistry A* **2019**, *7* (37), 21476-21487, DOI: 10.1039/c9ta07238a.

(6) Wang, H.; Song, Y.; Kang, Y.; Dang, S.; Feng, J.; Dong, Q. Reducing photovoltage loss at the anode contact of methylammonium-free inverted perovskite solar cells by conjugated polyelectrolyte doping. *Journal of Materials Chemistry A* **2020**, *8* (15), 7309-7316, DOI: 10.1039/d0ta00892c.

(7) Li, S.; Fan, K.; Cui, Y.; Leng, S.; Ying, Y.; Zou, W.; Liu, Z.; Li, C.-Z.; Yao, K.; Huang, H. Unravelling the Mechanism of Ionic Fullerene Passivation for Efficient and Stable Methylammonium-Free Perovskite Solar Cells. *ACS Energy Letters* **2020**, *5* (6), 2015-2022, DOI: 10.1021/acsenergylett.0c00871.

(8) Lin, Y. H.; Sakai, N.; Da, P.; Wu, J.; Sansom, H. C.; Ramadan, A. J.; Mahesh, S.; Liu, J.; Oliver, R. D. J.; Lim, J.; Aspitarte, L.; Sharma, K.; Madhu, P. K.; Morales-Vilches, A. B.; Nayak, P. K.; Bai, S.; Gao, F.; Grovenor, C. R. M.; Johnston, M. B.; Labram, J. G.; Durrant, J. R.; Ball, J. M.; Wenger, B.; Stannowski, B.; Snaith, H. J. A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. *Science* 2020, *369* (6499), 96-102, DOI: 10.1126/science.aba1628.

(9) Peng, Z.; Wei, Q.; Chen, H.; Liu, Y.; Wang, F.; Jiang, X.; Liu, W.; Zhou, W.; Ling, S.; Ning, Z. Cs0.15FA0.85PbI3/CsxFA1-xPbI3 Core/Shell Heterostructure for Highly Stable and Efficient Perovskite Solar Cells. *Cell Reports Physical Science* **2020**, *1* (10), DOI: 10.1016/j.xcrp.2020.100224.