Supporting Information

Hierarchical Co₃O₄/CoS microbox heterostructure as highly efficient bifunctional electrocatalyst for rechargeable Zn–air batteries

Kyeongseok Min,‡^a Sangjin Kim,‡^a Eoyoon Lee,^a Geunsang Yoo,^a Hyung Chul Ham,^a Sang Eun Shim,^a Dongwook Lim,*^a and Sung-Hyeon Baeck*^a

Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy Materials and Process, Inha University, Incheon 22212, Republic of Korea

‡ These authors contributed equally to this work.

*Corresponding author

E-mail address: dwlim@inha.ac.kr, shbaeck@inha.ac.kr

Fig. S1 The Gibbs free energy of formation (ΔG) of the Co based oxide and sulfide based on the Ellingham diagram.

Fig. S2 The XPS survey spectrum Co_3O_4/CoS catalyst.

Fig. S3 Rotating disk voltammograms of (a) Co-Co PBA and (b) Co_3O_4 at rotation speeds from 400 to 2025 rpm.

Fig. S4 The Koutecky–Levich plots of (a) Co-Co PBA and (b) Co₃O₄ at different potentials.

Fig. S5 Electron transfer number of catalysts as a function of applied voltage.

Fig. S6 (a) RRDE ring current and disk current and (b) HO_2^- yields and n values of Co-Co PBA, Co_3O_4 , and Co_3O_4/CoS in O_2 -saturated 0.1 M KOH at 1600 rpm and sweep rate of 5 mV s⁻¹.

Fig. S7 (a) Tafel plots and (b) kinetic current densities of prepared samples.

Time / s Fig. S8 Methanol-crossover tests performed by adding methanol into the electrolyte at 2000 s.

and (c) Co_3O_4/CoS samples.

Fig. S10 Structure of (a) Co-terminated Co_3O_4 and (b) Co-terminated CoS. Free energy change diagrams (U = onset potential) of (c), (e) Co-terminated Co_3O_4 (ORR/OER), (d), (f) Co-terminated CoS (ORR/OER) in alkaline condition.

Catalysts	E _{j=10} (V)	E _{1/2} (V)	ΔE (V)	Reference
Co ₃ O ₄ /CoS	1.579	0.820	0.759	This work
Co ₃ O ₄	1.710	0.727	0.983	This work
Со-Со РВА	1.648	0.688	0.960	This work
$Pt/C + RuO_2$	1.596	0.827	0.769	This work
Co₃O₄/NPGC	1.680	0.842	0.838	Angew. Chem. Int. Ed., 2016, 55 , 4977-4982.
CoO@Co₃O₄/NSG- 650	1.690	0.790	0.900	ACS Appl. Mater. Interfaces, 2018, 10 , 7180-7190.
Co₃O₄/CNF	1.646	0.851	0.795	J. Energy Storage, 2019, 23 , 269-277.
Co ₃ O ₄ -T500	1.610	0.650	0.960	Electrochim. Acta, 2021, 367 , 137490.
Co-Co ₃ O ₄ @NAC	1.610	0.795	0.815	Appl. Catal. B Environ., 2020, 260 , 118188.
CoS ₂ (400)/N,S-GO	1.610	0.790	0.820	ACS catal., 2015, 5 , 3625- 3637.
Ni _x -Co ₉ S ₈ @HCF-t	1.544	0.860	0.684	ACS Appl. Mater. Interfaces, 2021, 13 , 18683-18692.
Co _{0.5} Fe _{0.5} S@N-MC	1.640	0.808	0.832	ACS Appl. Mater. Interfaces, 2015, 7 , 1207- 1218.
Co ₃ O ₄ /2.7Co ₂ MnO ₄	1.770	0.680	1.090	Nanoscale, 2013, 5 , 5312-5315.
Co ₃ FeS _{1.5} (OH) ₆	1.588	0.721	0.867	Adv. Mater., 2017, 29 , 1702327.
FeN _x -embedded PNC	1.625	0.860	0.775	ACS nano, 2018, 12 , 1949-1958.

Table S1 Comparison of the ORR and OER performance of Co_3O_4/CoS against previously reported bifunctional catalysts in 0.1 M KOH solution

Catalysts	ΔE _{ad} (O) (eV)	ΔE _{ad} (OH) (eV)	ΔE _{ad} (OOH) (eV)
Co ₃ O ₄ /CoS	-3.59	-2.51	-2.02
O-terminated Co_3O_4	-3.04	-2.20	-1.19
Co-terminated Co_3O_4	-4.22	-5.16	-3.54
S-terminated CoS	-4.40	-2.27	-0.86
Co-terminated CoS	-6.65	-4.84	-2.48

Table S2 Binding energy (ΔE_{ad}) of the reaction intermediates by DFT calculation

Catalysts	Current density (mA cm ⁻²)	Power density (mW cm ⁻²)	Specific capacity (mAh g _{zn} ⁻¹)	Energy density (Wh kg _{zn} ⁻¹)	Reference
Co ₃ O ₄ /CoS	119	168	715	840	This work
$Pt/C + RuO_2$	80	137	690	786	This work
FeNC-S- Fe _x C/Fe	-	149.4	663	795	<i>Adv. Mater.</i> , 2018, 30 , 1804504.
NCNF	-	-	626	776	Adv. Mater., 2016, 28 , 3000-3006.
NCNT/CoO- NiO-NiCo	-	-	594	713	Angew. Chem. Int. Ed., 2015, 54 , 9654- 9658.
NCNT/ Co _x Mn _{1-x} O	-	-	581	695	Nano Energy, 2016, 20 , 315-325.
CoZn-NC-700	-	152	578	694	Adv. Funct. Mater., 2017, 27 , 1700795.
AgCu-10	-	85.8	572	641	<i>Electrochim. Acta,</i> 2015, 158 , 437-445.
NiCo₂S₄/N- CNT	107	147	431.1	554.6	Nano Energy, 2017, 31 , 541-550.
ZnCo ₂ O ₄ /N- CNT	-	82.3	428	595	Adv. Mater., 2016, 28 , 3777-3784.