Supporting Information

Hollow platinum tetrapods: using a combination of {111} facets, surface concave topology, and ultrathin walls to boost their oxygen reduction reactivity

Mengmeng Li,⁺ Anzhou Yang,⁺ Siyuan Wang, Yingzi Wang, Qiuzi Huang, Bingfeng Cai,

Xiaoyu Qiu,* and Yawen Tang*

Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.

E-mail: 07255@njnu.edu.cn (X. Qiu); tangyawen@njnu.edu.cn (Y. Tang)

Fig. S1 TEM images of the monodispersed Pd tetrapods as seed.

Fig. S2 XRD pattern of the Pd tetrapods and $Pd@Pt_{6L}$ core-shell tetrapods.

Fig. S3 TEM image of the products obtained by using the standard protocol of $Pd@Pt_{6L}$

core-shell tetrapods except the injection rate.

Fig. S4 TEM images of the Pd@Pt core-island tetrapods obtained by using the standard protocol of Pd@Pt_{6L} core-shell tetrapods except the reaction temperature.

Fig. S5 TEM images of the products after etching the Pd core of Pd@Pt core-island tetrapods.

Fig. S6 TEM images of the products obtained by using the standard protocol of $Pd@Pt_{6L}$ core-shell tetrapods except the volume of precursor. (a), (c) 5 mL of K_2PtCl_6/EG solution. (b), (d) 15 mL of K_2PtCl_6/EG solution.

Fig. S7 TEM images of the products obtained by etching the sample from Fig. S6.

Fig. S8 ORR polarization curves recorded in O₂-saturated 0.1 M HClO₄ solution.

Fig. S9 ORR polarization curves of the (a) Pd@Pt TPs, and (b) Pt/C before and after 1000 cycles at a scan rate 100 mV s⁻¹.

Fig. S10 TEM image of the ultrathin Pt HTPs after ADTs.

Fig. S11 TEM image of the Pd@Pt core-shell tetrapods after ADTs.

Fig. S12 TEM image of the Pt/C after ADTs.

Table S1 Comparison of the ORR performance of the ultrathin Pt HTPs with some

Number	Catalysts	E _{onset} (V vs. RHE)	E _{1/2} (V <i>vs</i> . RHE)	Reference
1	Pd@Pt TPs	0.995	0.789	This work

previously reported noble metal-based catalysts in 0.5 M H_2SO_4 solution.

2	Pt HTPs	1.014	0.836	This work
3	Pt/C	1.009	0.825	This work
4	Pt-WP-CL/AEG-3	0.720	0.610	[1]
5	Pt/TiO ₂ -2/C	0.880	0.727	[2]
6	Pt/OMC	~ 0.930	~ 0.750	[3]
7	5 wt % Pt-CeO _x NW/C	0.890	0.750	[4]
8	tensile strained 5 nm Pt	~ 0.890	0.672	[5]
9	Pt/C-(NH ₄) ₂ PtCl ₆	~ 0.950	~ 0.810	[6]

References

- 1. C. Zhang, Y. Dai, H. Chen, Y. Ma, B. Jing, Z. Cai, Y. Duan, B. Tang, J. Zou, *J. Mater. Chem. A*, 2018, **6** (45), 22636-22644.
- E. C. M. Barbosa, L. S. Parreira, I. C. de Freitas, L. R. Aveiro, D. C. de Oliveira, M. C. dos Santos, P. H. C. Camargo, ACS Appl. Energy Mater., 2019, 2, 5759-5768.
- 3. M. Sakthivel, J.-F. Drillet, *Appl. Catal. B: Environ.*, 2018, **231**, 62-72.
- S. Chauhan, T. Mori, T. Masuda, S. Ueda, G. J. Richards, J. P. Hill, K. Ariga, N. Isaka, G. Auchterlonie, J. Drennan, ACS Appl. Mater. Interfaces, 2016, 8, 9059-9070.
- 5. M. Du, L. Cui, Y. Cao, A. J. Bard, *J. Am. Chem. Soc.*, 2015, **137**, 7397-7403.
- 6. R. Sharma, Y. Wang, F. Li, J. Chamier, S. M. Andersen, *ACS Appl. Energy Mater.*, 2019, **2**, 6875-6882.