Electronic Supplementary Information

Structural and Electronic Modulation of Conductive MOFs for Efficient Oxygen Evolution Reaction Electrocatalysis

Jiawen Li, Peng Liu, Jianxin Mao, Jianyue Yan, and Wenbo Song*

College of Chemistry, Jilin University, Changchun 130012, P.R. China.

*E‐mail: wbsong@jlu.edu.cn

Contents:

1. Experimental Section .. 2
2. PXRD Patterns .. 3
3. SEM and TEM Images ... 4
4. XPS Spectra .. 6
5. Linear Sweep Voltammetry ... 8
6. ECSA Measurements ... 9
7. Stability Test .. 10
8. Comparison with Commercial Catalyst .. 12
9. Theoretical Calculation Model .. 13
10. Comparison Table .. 14
11. Equivalent Circuit Parameters for EIS Analysis .. 15
1. Experimental Section

TOF calculation: The TOF values were estimated based on our previous report, resulting in the following formula:

$$\text{TOF} = \frac{\text{number of total oxygen turnovers / cm}^2}{\text{number of active sites / cm}^2}$$

The number of total oxygen turnovers was calculated from the current density by the following equation:

$$\text{Number of } O_2 = \left(\frac{1 \text{ mA}}{1000 \text{ mA} \cdot \text{cm}^2} \right) \left(\frac{1 \text{ mol e}^-}{96485.3 \text{ C}} \right) \left(\frac{1 \text{ mol } O_2}{4 \text{ mol } e^-} \right) \left(\frac{6.022 \times 10^{23} \text{ molecules}}{1 \text{ mol } O_2} \right) = 1.56 \times 10^{15} \frac{O_2/\text{s}}{\text{cm}^2 \text{ per mA/cm}^2}$$

The number of active sites was regarded as the number of surface sites (Ni-O4_4 and Fe-O4_4 are regarded as active sites), and calculated by the following formula:

$$\text{Number of active sites} = \left(\frac{\text{number of metal sites / unit cell}}{\text{Volume / unit cell}} \right)^2$$

Finally, the plot of current density can be converted into a TOF plot according to the following formula:

$$\text{TOF} = \left(\frac{1.56 \times 10^{15} \frac{O_2}{\text{s/cm}^2 \text{ per mA/cm}^2}}{\text{Number of active sites} \times A_{\text{ECSA}}} \right) \times |J|$$

The A_{ECSA} is the electrochemical active surface area, which can be calculated from the following formula, where specific capacitance is C_{dl}, and 40 μF cm$^{-2}$ is a constant to convert capacitance to A_{ECSA}:

$$A_{\text{ECSA}} = \frac{\text{specific capacitance}}{40 \text{ μF cm}^{-2} \text{ per cm}^2_{\text{ECSA}}}$$

D-band center Analysis: The d-band center (ε_d) was calculated according to following equation:

$$\varepsilon_d = \frac{\int_{-\infty}^{0} N(\varepsilon) \varepsilon \, d\varepsilon}{\int_{-\infty}^{0} N(\varepsilon) \, d\varepsilon}$$

Where $N(\varepsilon)$ is the d-band DOS, ε is the energy.
2. PXRD Patterns

![Figure S1](image1.png)

Figure S1. Experimental (green) and simulated (grey) PXRD pattern of NiPc-Ni MOF.

![Figure S2](image2.png)

Figure S2. Experimental PXRD patterns of NiPc-NiFe$_{0.05}$, NiPc-NiFe$_{0.09}$, NiPc-NiFe$_{0.20}$, and simulated pattern of NiPc-NiFe$_{0.50}$.
3. SEM and TEM Images

Figure S3. SEM images (a, b) of NiPc-Fe, SEM (c) and TEM (d) image of NiPc-Ni.
Figure S4. TEM images of NiPc-NiFe0.05 (a, b), NiPc-NiFe0.09 (c, d), NiPc-NiFe0.20 (e, f), NiPc-Fe (g, h).
4. XPS Spectra

Figure S5. XPS spectra of NiPc-NiFe$_{0.09}$: a) survey, b) C 1s, c) N 1s, d) O 1s. There is an integral ratio of 55:45 for C=O : C-O.

Figure S6. XPS spectra of NiPc-NiFe$_{0.05}$: a) survey, b) C 1s, c) N 1s, d) O 1s. There is an integral ratio of 47:53 for C=O : C-O.
Figure S7. XPS spectra of NiPc-NiFe$_{0.20}$: a) survey, b) C 1s, c) N 1s, d) O 1s. There is an integral ratio of 51:49 for C=O : C-O.

Figure S8. XPS spectra of NiPc-Fe: a) survey, b) C 1s, c) N 1s, d) O 1s, e) Ni 2p, f) Fe 2p. There is an integral ratio of 56:44 for C=O : C-O.
5. Linear Sweep Voltammetry

Figure S10. Enlarged LSV plots for OER.
6. ECSA Measurements

Figure S11. Scan rate dependent-current densities at 0.92 V vs. RHE

Figure S12. CVs in non-faradaic region of four MOFs.
7. Stability Test

Figure S13. Chronopotentiometry test of NiPc-NiFe$_{0.09}$@CC (Carbon Cloth).

Figure S14. High-resolution Ni 2p XPS spectra before and after Chronopotentiometry test of NiPc-NiFe$_{0.09}$@CC.
Figure S15. (a) LSV curves of NiPc-NiFe$_{0.09}$ after 3000 CV cycles, (b) PXRD patterns of NiPc-NiFe$_{0.09}$ before and after OER process, (c, d) SEM images of NiPc-NiFe$_{0.09}$ after OER process (3000 CV cycles).
8. Comparison with Commercial Catalyst

Figure S16. LSV curves of NiPc-NiFe$_{0.09}$ and commercial RuO$_2$ catalyst before and after 1000 CV cycles, the values in the figure are the shift of η @10 mA cm$^{-2}$ after 1000 CV cycles. Besides, the η of RuO$_2$ is 317 mV @10 mA cm2, which is larger than that of NiPc-NiFe$_{0.09}$, indicating the superior OER electrocatalytic performance of NiPc-NiFe$_{0.09}$.
9. Theoretical Calculation Model

Figure S17. Constructed MOF Slabs for calculation.
Table S1. Comparisons of the OER activity of MOF-based catalysts.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Electrolyte</th>
<th>η @ $j=10$ mA cm$^{-2}$ (mV)</th>
<th>η @ $j=100$ mA cm$^{-2}$ (mV)</th>
<th>Tafel slope (mV dec$^{-1}$)</th>
<th>TOF (s$^{-1}$)</th>
<th>Substrate</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiPe-NiFe$_{0.09}$</td>
<td>1.0 M KOH</td>
<td>300</td>
<td>384</td>
<td>55</td>
<td>1.943 @η=300 mV</td>
<td>GC</td>
<td>This work</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.943 @η=350 mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAF-X27-OH</td>
<td>1.0 M KOH</td>
<td>387</td>
<td>-</td>
<td>66</td>
<td>0.0014 @η=300 mV</td>
<td>GC</td>
<td>J. Am. Chem. Soc., 2016, 138, 8336.</td>
</tr>
<tr>
<td>Ni-HAB</td>
<td>1.0 M KOH</td>
<td>320</td>
<td>-</td>
<td>51</td>
<td>0.016 @η=300 mV</td>
<td>CFP</td>
<td>Small, 2020, 16, 1907043.</td>
</tr>
<tr>
<td>NiCo-UOMOFNs</td>
<td>1.0 M KOH</td>
<td>250</td>
<td>-</td>
<td>42</td>
<td>0.86 @η=300 mV</td>
<td>GC</td>
<td>Nat. Energy., 2016, 1, 16184.</td>
</tr>
<tr>
<td>Pb-TCPP</td>
<td>1.0 M KOH</td>
<td>470</td>
<td>-</td>
<td>106.2</td>
<td>0.00051 @η=1.2 V</td>
<td>GC</td>
<td>Dalton Trans., 2016, 45, 61-65.</td>
</tr>
<tr>
<td>CUMSs-ZIF-67</td>
<td>1.0 M KOH</td>
<td>410</td>
<td>-</td>
<td>185.1</td>
<td>0.462 @η=300 mV</td>
<td>GC</td>
<td>Nano Energy, 2017, 41, 417-425.</td>
</tr>
<tr>
<td>UTSA-16</td>
<td>1.0 M KOH</td>
<td>408</td>
<td>710*</td>
<td>77</td>
<td>-</td>
<td>GC</td>
<td>ACS Appl. Mater. Interfaces, 2017, 9, 7193-7201.</td>
</tr>
<tr>
<td>CoNi-Cu(BDC)</td>
<td>1.0 M KOH</td>
<td>327</td>
<td>420*</td>
<td>75.7</td>
<td>-</td>
<td>GC</td>
<td>New J. Chem., 2020, 44, 2459-2464.</td>
</tr>
<tr>
<td>Ni${5.7}$Ru${0.3}$[HHTP]$_3$</td>
<td>0.1 M KOH</td>
<td>390</td>
<td>-</td>
<td>61</td>
<td>-</td>
<td>GC</td>
<td>Chem. Commun., 2020, 56, 13615-13618.</td>
</tr>
<tr>
<td>NNU-23</td>
<td>0.1 M KOH</td>
<td>365</td>
<td>-</td>
<td>81.8</td>
<td>0.03 @η=400mV</td>
<td>CC</td>
<td>Angew. Chem. Int. Ed., 2018, 57, 9660-9664.</td>
</tr>
</tbody>
</table>

*These values are estimated by LSV plots in the literatures.
11. Equivalent Circuit Parameters for EIS Analysis

Table S2. Fitting Results of these conductive MOFs.

<table>
<thead>
<tr>
<th>MOF Type</th>
<th>R_s ($\Omega \text{ cm}^2$)</th>
<th>CPE (mF cm^{-2})</th>
<th>R_p ($\Omega \text{ cm}^2$)</th>
<th>C_{dl} (mF cm^{-2})</th>
<th>R_{ct} ($\Omega \text{ cm}^2$)</th>
<th>Z_o ($\text{S s}^{0.5} \text{cm}^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiPc-NiFe$_{0.09}$</td>
<td>0.8756</td>
<td>0.3521</td>
<td>0.05715</td>
<td>86.92</td>
<td>0.3315</td>
<td>0.1189</td>
</tr>
<tr>
<td>NiPc-NiFe$_{0.05}$</td>
<td>0.7179</td>
<td>1.726</td>
<td>0.139</td>
<td>26.62</td>
<td>1.557</td>
<td>0.1055</td>
</tr>
<tr>
<td>NiPc-NiFe$_{0.20}$</td>
<td>0.949</td>
<td>0.1827</td>
<td>0.1603</td>
<td>1.594</td>
<td>2.319</td>
<td>0.02773</td>
</tr>
<tr>
<td>NiPc-Fe</td>
<td>0.7634</td>
<td>1.225</td>
<td>3.953</td>
<td>1.078</td>
<td>12.26</td>
<td>0.1232</td>
</tr>
<tr>
<td>NiPc-Ni</td>
<td>0.7638</td>
<td>427.2</td>
<td>0.3281</td>
<td>40.17</td>
<td>19.25</td>
<td>0.3553</td>
</tr>
</tbody>
</table>

In the applied module, R_s represents solution resistance, which a combination of contact resistance in the overall circuit and electrolyte. CPE represents the constant phase elements. R_p and R_{ct} are on behalf of the resistance of surface porosity and charge-transfer resistance, respectively. C_{dl} represents the double-layer capacitance, which is formed by the adsorption of ions in the solution onto the surface of the electrode. Z_o is limited Warburg impedance, which is originated from finite diffusion layer (such as a thin cell or a coated sample).

The similar value of R_s indicates the conditions of our electrochemical tests are constant. The small value of R_p of NiPc-NiFe$_{0.09}$ demonstrates that this catalyst is highly porous. The value of C_{dl} of NiPc-NiFe$_{0.09}$ is significantly larger than other MOFs, in accordance with its highest electrocatalytic performance. R_{ct} value reflects the ability of charge transfer between electrolyte and electrode. The smallest value of 0.3315 $\Omega \text{ cm}^2$ of NiPc-NiFe$_{0.09}$ proves the highest electron transport efficiency.

References: