Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supporting information

## Biomimetic Nanocoral Reef Electrocatalysts of 2D-Ni(Co,Fe)P/1D-WO<sub>x</sub> for Efficient Water Splitting

Dokyoung Kim, Yongjae Jeong, Hyogyun Roh, Chaeeun Lim, Kijung Yong\*

Surface Chemistry Laboratory of Electronic Materials, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea



Fig. S1 A SEM image of the WO<sub>x</sub> NWs colonies on 3D nickel foam.



Fig. S2 XRD patterns of NiCoP-WO<sub>x</sub>, NiFeP-WO<sub>x</sub> and WO<sub>x</sub>.



Fig. S3 SEM image of the NiFeP-WO $_x$  nanocoral reef catalyst.



Fig. S4 XRD peaks of (a) nickel foam and (b) WO<sub>x</sub>/nickel foam before and after phosphorization.

| a |         |          | b |         |          |  |
|---|---------|----------|---|---------|----------|--|
|   | Element | Atomic % |   | Element | Atomic % |  |
|   | W       | 14.82    |   | W       | 14.61    |  |
|   | 0       | 45.94    |   | 0       | 49.36    |  |
|   | Ni      | 15.13    |   | Ni      | 13.44    |  |
|   | Со      | 7.22     |   | Fe      | 3.31     |  |
|   | Р       | 16.89    | _ | Р       | 19.28    |  |

Fig. S5 Atomic composition ratios of the catalyst surfaces obtained from the EDX analysis:

(a) NiCoP-WO<sub>x</sub> and (b) NiFeP-WO<sub>x</sub>.



Fig. S6 XPS O 1s spectra: (a) NiCoP-WO<sub>x</sub> and (b) NiFeP-WO<sub>x</sub>.



Fig. S7 SEM images after the stability test: (a) NiCoP-WO<sub>x</sub> and (b) NiFeP-WO<sub>x</sub>.



**Fig. S8** Cyclic voltammograms of catalysts in the non-Faradaic capacitance current range at scan rates of 60, 80, 100, 120 and 140 mV/s: (a) NiCoP-WO<sub>x</sub>, (b) NiCoP, (c) NiFeP-WO<sub>x</sub>, and (d) NiFeP.

| Catalysts                                           | η <sub>10</sub> (HER) | η <sub>10</sub> (OER)           | Cell voltage <sub>10</sub> (OWS) |
|-----------------------------------------------------|-----------------------|---------------------------------|----------------------------------|
| This work                                           | 49 mV                 | 270 mV                          | 1.51 V                           |
| Pt@Co <sub>3</sub> O <sub>4</sub> /NF <sup>47</sup> | 30 mV                 | 263 mV                          | 1.53 V                           |
| Pt-CoS <sub>2</sub> /CC <sup>48</sup>               | 24 mV                 | 300 mV                          | 1.55 V                           |
| PtNiP MNs/C <sup>49</sup>                           | 54 mV                 | 320 mV                          | 1.59 V                           |
| Co-P-B-5 <sup>50</sup>                              | 145 mV                | 290 mV                          | 1.56 V                           |
| Fe <sub>x</sub> V <sub>y</sub> PC/NF <sup>51</sup>  | 66 mV                 | 201 mV                          | 1.56 V                           |
| V-FeNi <sub>2</sub> P <sup>52</sup>                 | 70 mV                 | 200 mV                          | 1.57 V                           |
| Fe <sub>x</sub> -NiCoP <sup>53</sup>                | 60 mV                 | 293 mV (50 mA/cm <sup>2</sup> ) | 1.61 V                           |
| NiFeP NSA <sup>26</sup>                             | 106 mV                | 270 mV (20 mA/cm <sup>2</sup> ) | 1.62 V                           |
| CoP ND <sup>54</sup>                                | 134 mV                | 318 mV                          | 1.62 V                           |
| CoP/TM <sup>55</sup>                                | 72 mV                 | 310 mV                          | 1.64 V                           |
| H-CoP@NC <sup>56</sup>                              | 200 mV                | 320 mV                          | 1.72 V                           |

**Table. S1** Comparison of HER/OER/OWS performance of our catalysts with other noble and non-noble metal electrocatalysts in alkaline media (1.0 M KOH).