Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Controllable Synthesis of Ultrathin Layered Transition Metallic

Hydroxide /Zeolitic Imidazolate Framework-67 Hybrid Nanosheets for High-

Performance Supercapacitors

Chunli Liu^a, Yang Bai^{a,b*}, Ji Wang^a, Ziming Qiu^a, Huan Pang^{a*}

^a School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225000, Jiangsu, P. R. China.
 ^b State Key Laboratory of Coordination Chemistry, Nanjing University, China.
 E-mail:

huanpangchem@hotmail.com, panghuan@yzu.edu.cn (H. Pang), ybai@yzu.edu.cn (Y. Bai)

Contents

1 Experimental
1.1 MaterialsS4
1.2 Preparation of ultrathin α -Co(OH) $_2$ /ZIF-67 nanosheetsS4
1.3 Preparation of ultrathin α -CoM $_{0.05}$ (OH) $_x$ /ZIF-67 nanosheetsS4
1.4 Preparation of 2D ultrathin α -Co(OH) ₂ nanosheetsS4
1.5 Preparation of 2D β -Co(OH) $_2$ nanosheetsS5
1.6 Materials Characterization
1.7 Electrochemical tests with a three-electrode system
1.8 Evaluations with a two-electrode asymmetric supercapacitor
Fig. S1. AFM image and the corresponding height of α -Co(OH) ₂ /ZIF-67S7
Fig. S2. AFM image and the corresponding height of α -CoNi _{0.05} (OH) _x /ZIF-67S8
Fig. S3. (a) AFM image and the corresponding height of α -CoZn _{0.05} (OH) _x /ZIF-67S9
Fig. S4. (a-d) SEM and (e) TEM images of α -CoMn _x (OH) _x /ZIF-67 with diverse ratios of Co:Mn
= (a) 1:0.01, (b) 1:0.1, (c) 1:0.5, (d) 1:1 and (e) 0:1S10
Fig. S5. The Tyndall light scattering of (a) α -Co(OH) ₂ /ZIF-67, (b) α -CoMn _{0.05} (OH) _x /ZIF-67, (c)
α -CoNi _{0.05} (OH) _x /ZIF-67, (d) α -CoZn _{0.05} (OH) _x /ZIF-67 nanosheets in ethanol solutionS11
Fig. S6. (a) HRTEM and (b) SAED images of α -CoNi _{0.05} (OH) _x /ZIF-67S12
Fig. S7. (a) HRTEM and (b) SAED images of α -CoZn _{0.05} (OH) _x /ZIF-67S13
Fig. S8. EDX spectrum of α -CoMn _{0.05} (OH) _x /ZIF-67S14
Fig. S9. EDX spectrum of α -CoNi _{0.05} (OH) _x /ZIF-67S15
Fig. S10. EDX spectrum of α-CoZn _{0.05} (OH) _x /ZIF-67S16
Fig. S11. Elemental mapping of C-K, N-K, O-K, Co-K and Ni-K of α -CoNi _{0.05} (OH) _x /ZIF-67S17
Fig. S12. Elemental mapping of C-K, N-K, O-K, Co-K and Zn-K of α -CoZn _{0.05} (OH) _x /ZIF-67S18
Table S1. The weight % and atomic % of related elements in the α -CoM _{0.05} (OH) _x /ZIF-67S19
Fig. S13. XRD pattern of β -Co(OH) ₂ and α -Co(OH) ₂ . The XRD pattern indicates two different
crystalline types of hydroxideS20
Fig. S14. SEM images of (a) β -Co(OH) ₂ and (c) α -Co(OH) ₂ . TEM images of (b) β -Co(OH) ₂ and (d)
α-Co(OH) ₂

Fig. S15. The pore-size distribution of (a) α -Co(OH) ₂ /ZIF-67, (b) α -CoMn _{0.05} (OH) _x /ZIF-67, (c)
α -CoNi _{0.05} (OH) _x /ZIF-67, (d) α -CoZn _{0.05} (OH) _x /ZIF-67S22
Fig. S16. Full-survey XPS spectrum of α -Co(OH) ₂ /ZIF-67 and α -CoM _{0.05} (OH) _x /ZIF-67S23
Fig. S17. CV curves of (a) α -CoMn _{0.05} (OH) _x /ZIF-67, (b) α -CoNi _{0.05} (OH) _x /ZIF-67, (c) α -
$CoZn_{0.05}(OH)_x/ZIF-67$, (d) α -Co(OH) ₂ /ZIF-67 and (e) α -Co(OH) ₂ at various voltage windowS24
Fig. S18. CV curves of (a) α -CoMn _{0.05} (OH) _x /ZIF-67, (b) α -CoNi _{0.05} (OH) _x /ZIF-67, (c) α -
CoZn _{0.05} (OH) _x /ZIF-67, (d) α -Co(OH) ₂ /ZIF-67 and (e) α -Co(OH) ₂ at various scan ratesS25
Fig. S19. GCD curves of (a) α -CoNi _{0.05} (OH) _x /ZIF-67, (b) α -CoZn _{0.05} (OH) _x /ZIF-67, (c) α -
Co(OH) ₂ /ZIF-67 and (d) α -Co (OH) ₂ S26
Fig. S20. Nyquist plots measured in the frequency range of 0.01-10 ⁵ HzS27
Fig. S21. CV curves of α -CoMn _{0.05} (OH) _x /ZIF-67//AC at various voltage windowS28
Fig. S22. GCD curves of α -CoMn _{0.05} (OH) _x /ZIF-67//AC at various voltage window of (a) 0-1.35
V, (b) 0-1.40 V, (c) 0-1.45 V, and (d) 0-1.55 V
Table S2. The relevant electrochemical properties of $Co(OH)_2$, LDH, ZIF-67 and their
composites

S31

1 Experimental

1.1Materials

Cobalt nitrate hexahydrate (Co(NO₃)₂·6H₂O), cobalt chloride hexahydrate (CoCl₂·6H₂O), manganese nitrate tetrahydrate (Mn(NO₃)₂·4H₂O), nickel nitrate dihydrate (Ni(NO₃)₂·2H₂O), zinc nitrate hexahydrate (Zn(NO₃)₂·6H₂O), 2-MeIm, and *N*,*N*-dimethylformamide (DMF) were bought from Aladdin Industrial Corporation.

1.2 Preparation of ultrathin α -Co(OH)₂/ZIF-67 nanosheets

The 2D α -Co(OH)₂/ZIF-67 nanosheets can be obtained by a one-pot co-precipitation reaction. Co(NO₃)₂·6H₂O (1 mmol) was dissolved in a mixture solution including 15 mL of DMF and 15 mL of H₂O (denoted by solution A) and 2-MeIm (4 mmol) was dissolved in the solution with the same composition (denoted by solution B). After stirring for 15 min, the solution A was injected into the solution B at once and the mixture was stirred at room temperature for 24 h. Finally, the sample was centrifuged and washed with distilled H₂O and ethanol to remove residue followed by freeze-drying.

1.3 Preparation of ultrathin α -CoM_{0.05}(OH)_x/ZIF-67 nanosheets

The 2D α -CoM_{0.05}(OH)_x/ZIF-67 nanosheets can be obtained by using the similar method as α -Co(OH)₂/ZIF-67. One mmol Co(NO₃)₂·6H₂O and 0.05 mmol M(NO₃)₂ were dissolved in a mixture solution including 15 mL of DMF and 15 mL of H₂O (denoted by solution A) and 4 mmol 2-MeIm was dissolved in the solution with the same composition (denoted by solution B). After stirring for 15 min, the solution A was injected into the solution B at once and the mixture was stirred at room temperature for 24 h. Finally, the sample was centrifuged and washed with distilled H₂O and ethanol to remove residue. The α -CoM_{0.05}(OH)_x/ZIF-67 was obtained after freeze-drying.

1.4 Preparation of 2D ultrathin \alpha-Co(OH)₂ nanosheets

The 2D α -Co(OH)₂ nanosheets can be obtained by a plain precipitation reaction. 1 mmol CoCl₂·6H₂O was dissolved in 30 mL distilled H₂O, and NH₃·H₂O was added to regulate the

alkaline environment. After stirring for 24h, the sample was centrifuged and washed with water and ethanol to remove residue. The α -Co(OH)₂ was obtained after freeze-drying.

1.5 Preparation of 2D β -Co(OH)₂ nanosheets

The 2D β -Co(OH)₂ nanosheets can be obtained by a plain precipitation reaction. 1 mmol Co(NO₃)₂·6H₂O was dissolved in 60 mL distilled H₂O, and KOH was added to regulate the alkaline environment. After stirring for 24h, the sample was centrifuged and washed with water and ethanol to remove residue. The β -Co(OH)₂ was obtained after freeze-drying.

1.6 Materials Characterization

The detailed microstructures and morphology were observed by field emission scanning electron microscopy (FE-SEM, Zeiss-Supra55) under the acceleration voltage of 5.0 kV) and transmission electron microscopy (TEM, JEM-2100 instrument). High-resolution TEM (HRTEM) images, selected area electron diffraction (SAED) images, and elemental mapping were captured on a Tecnai G2 F30 at an acceleration voltage of 300 kV. The atomic force microscope (AFM) was performed into this sample using a Nanoscope V Multimode 8 scanning probe microscope from Bruker Corporation. The crystal phase of the as-synthetized products was performed by X-ray diffraction (XRD) on a Bruker D8 Advanced X-ray Diffractometer (Cu-K α radiation: $\lambda = 0.15406$ nm). Fourier transform infrared (FTIR) spectra were supplied to characterize their information of chemical bonds or functional groups on a Cary 610/670. The specific surface area was obtained from the N₂ adsorption/desorption isotherms and was calculated by the Brunauer-Emmett-Teller (BET) method on Autosorb IQ3. The surface composition and valence states were analyzed by X-ray photoelectron spectra (XPS) on a Thermo Scientific ESCALAB 250 apparatus.

1.7 Electrochemical tests with a three-electrode system

For the three-electrode cell, the working electrode was obtained by mixing the active materials, acetylene black, and polytetrafluoroethylene (PTFE) at a weight ratio of 80 : 15 : 5. Then, a few drops of isopropanol were added into the above mixture and coated on a piece of nickel foam (1×1 cm⁻², current collector), which was next drying and pressed into a thin foil

at a pressure of 8~10 MPa. The typical mass loading of the electrode material was 1.0~1.5 mg. The reference and counter electrode were Hg/HgO (3.0 M KOH) and Pt wire, respectively. The cyclic voltammetry (CV), galvanostatic charge discharge (GCD), and electrochemical impedance spectra (EIS) were tested on a CHI 760E electrochemical workstation in 3.0 M KOH. The specific capacitance (C) was calculated according to the following equation:

$$\int I \, dt$$

$$C = \overline{m \, \Delta V} \qquad (S1)$$

$$C = \overline{m \, \Delta V} \qquad (S2)$$

here, I represents discharge current (A), Δt represents discharge time (s), m represents mass of electroactive components (g) and ΔV represents potential window (V).

1.8 Evaluations with a two-electrode asymmetric supercapacitor

As for the manufacture of asymmetrical supercapacitor, α -CoMn_{0.05}(OH)_x/ZIF-67 material and AC were used as positive electrode and negative electrode, respectively. The α -CoMn_{0.05}(OH)_x/ZIF-67 (or AC), acetylene black, and PTFE were milled according to the above proportions and coated on nickel foam. The electrochemical tests of CV and GCD were also tested on a CHI 760E electrochemical workstation in 3.0 M KOH. The C was calculated according to the formula (S1) and (S2), and the power density (P, W kg⁻¹)/energy density (E, Wh kg⁻¹) was calculated according to the following equations:

$$E = \frac{C \Delta V^2}{2}$$
 (S3)
$$P = \frac{E}{\Delta t}$$
 (S4)

Fig. S1. AFM image and the corresponding thickness of α -Co(OH)₂/ZIF-67.

Fig. S2. AFM image and the corresponding thickness of α -CoNi_{0.05}(OH)_x/ZIF-67.

Fig. S3. (a) AFM image and the corresponding thickness of α -CoZn_{0.05}(OH)_x/ZIF-67.

Fig. S4. (a-e) SEM and (f) TEM images of α -CoMn_x(OH)_x/ZIF-67 with diverse ratios of Co:Mn = (a) 1:0.01, (b) 1:0.1, (c) 1:0.5, (d) 1:1 and (e, f) 0:1.

Fig. S5. The Tyndall light scattering of (a) α -Co(OH)₂/ZIF-67, (b) α -CoMn_{0.05}(OH)_x/ZIF-67, (c) α -CoNi_{0.05}(OH)_x/ZIF-67, (d) α -CoZn_{0.05}(OH)_x/ZIF-67 nanosheets in ethanol solution.

Fig. S6. (a) HRTEM and (b) SAED images of α -CoNi_{0.05}(OH)_x/ZIF-67.

Fig. S7. (a) HRTEM and (b) SAED images of α -CoZn_{0.05}(OH)_x/ZIF-67.

Fig. S8. EDS analysis of α -CoMn_{0.05}(OH)_x/ZIF-67.

Fig. S9. EDS analysis of α -CoNi_{0.05}(OH)_x/ZIF-67.

Fig. S10. EDS analysis of α -CoZn_{0.05}(OH)_x/ZIF-67.

Fig. S11. Elemental mapping of C-K, N-K, O-K, Co-K and Ni-K of α -CoNi_{0.05}(OH)_x/ZIF-67.

Fig. S12. Elemental mapping of C-K, N-K, O-K, Co-K and Zn-K of α -CoZn_{0.05}(OH)_x/ZIF-67.

	α-CoMn _{0.05} (OH) _x /ZIF-67		α-CoNi _{0.05} (OH) _x /ZIF-67		α-CoZn _{0.05} (OH) _x /ZIF-67	
Element	Weight %	Atomic %	Weight %	Atomic %	Weight %	Atomic %
С	82.90	90.27	81.37	89.75	80.57	88.75
Ν	1.45	1.36	2.58	2.44	1.58	1.49
0	8.20	6.70	6.94	5.75	9.56	7.91
Со	7.06	1.56	8.59	1.93	7.55	1.69
М	0.36	0.08	0.48	0.11	0.71	0.14

Table S1. The weight % and atomic % of related elements in the α -CoM_{0.05}(OH)_x/ZIF-67.

Fig. S13. XRD patterns of β -Co(OH)₂ and α -Co(OH)₂. The XRD patterns indicate two different crystalline types of the hydroxides.

Fig. S14. SEM images of (a) β -Co(OH)₂ and (c) α -Co(OH)₂. TEM images of (b) β -Co(OH)₂ and (d) α -Co(OH)₂.

Fig. S15. The pore-size distribution of (a) α -Co(OH)₂/ZIF-67, (b) α -CoMn_{0.05}(OH)_x/ZIF-67, (c) α -CoNi_{0.05}(OH)_x/ZIF-67, (d) α -CoZn_{0.05}(OH)_x/ZIF-67.

Fig. S16. Full-survey XPS spectrum of α -Co(OH)₂/ZIF-67 and α -CoM_{0.05}(OH)_x/ZIF-67.

Fig. S17. CV curves of (a) α -CoMn_{0.05}(OH)_x/ZIF-67, (b) α -CoNi_{0.05}(OH)_x/ZIF-67, (c) α -CoZn_{0.05}(OH)_x/ZIF-67, (d) α -Co(OH)₂/ZIF-67 and (e) α -Co(OH)₂ at various voltage window.

Fig. S18. CV curves of (a) α -CoMn_{0.05}(OH)_x/ZIF-67, (b) α -CoNi_{0.05}(OH)_x/ZIF-67, (c) α -CoZn_{0.05}(OH)_x/ZIF-67, (d) α -Co(OH)₂/ZIF-67 and (e) α -Co(OH)₂ at various scan rates.

Fig. S19. GCD curves of (a) α-CoNi_{0.05}(OH)_x/ZIF-67, (b) α-CoZn_{0.05}(OH)_x/ZIF-67, (c) α-Co(OH)₂/ZIF-67 and (d) α-Co (OH)₂.

Fig. S20. Nyquist plots measured in the frequency range of $0.01-10^5$ Hz.

Fig. S21. CV curves of α -CoMn_{0.05}(OH)_x/ZIF-67//AC at various voltage windows.

Fig. S22. GCD curves of α -CoMn_{0.05}(OH)_x/ZIF-67//AC at various voltage windows of (a) 0-1.35 V, (b) 0-1.40 V, (c) 0-1.45 V, and (d) 0-1.55 V.

Table S2. The relevant electrochemical properties of $Co(OH)_2$, LDH, ZIF-67 and their composites.

Material	Potential window / V	Electrolyte	Reference electrode	Specific capacitance / F g ⁻¹	Cycling performance (Device)	Reference
СоООН	-0.2-0.6	3 М КОН	Hg/HgO	198 F g ⁻¹ at 0.1 A g^{-1}	83% retention at 1 A g ⁻¹ after 5000 cycles	S1
α-Co(OH) ₂	0-0.6	6 М КОН	Hg/HgO	345 F g ⁻¹ at 0.1 A g ⁻¹	86% retention at 5 A g ⁻¹ after 15000 cycles	S2
α-Co(OH) ₂	-0.1-0.6	6 М КОН	SCE	436 F g ⁻¹ at 50 mA cm ⁻²	549 F g ⁻¹ to 960 F g ⁻¹ (current density from 25 to 5 mA cm ⁻²) after 3000 cycles	S3
(NiCo)(OH)2/Cu(OH)2/C F	0-0.4	2 M KOH	SCE	849.6 C g ⁻¹ at 5 mA cm ⁻²	81.03% retention at 100 mA cm ⁻² after 5000 cycles	S4
(NiCo)(OH) ₂ /NiCo ₂ O ₄	-0.1-0.45	2 M KOH	SCE	1132 F g ⁻¹ at 2 mA cm ⁻²	90% retention at 20 mA cm ⁻² after 2000 cycles	S5
Co(OH)2/CoNi-MOF	0.05-0.45	1 M KOH	SCE	1044 F g ⁻¹ at 2 A $$\rm g^{-1}$$	94% retention after 5000 cycles	S6
ZIF-67	-0.3-0.25	6 M KOH	Ag/AgCl (3.5 M KCl)	103.6 F g ⁻¹ at 1 A	59% retention after 1000 cycles at 10 Ag ⁻¹ (TES)	S7
Mn doped ZIF-67	0-0.4	ЗМ КОН	Hg/HgO	322 F g ⁻¹ at 3 A g ⁻¹	64.1% retention after 1500 cycles at 10 Ag ⁻¹ (TES)	S8
rGO/ZIF-67	-0.3-0.25	6 М КОН	Ag/AgCl (3.5 M KCl)	210 F g $^{-1}$ at 1 A g $^{-1}$	-	S7
ZIF-67/GO	-0.3-0.5	6 M KOH	SCE	202 F g ⁻¹ at 1 A g ⁻¹	-	S9
Ni ₃₃ /ZIF-67/rGO ₂₀	-0.2-0.8	1 M H ₂ SO ₄	SCE	304.2 F g ⁻¹ at 1 A g ⁻¹	87% retention after 4500 cycles	S10
NiAl LDH/Ni-MOF	0-0.5	6 М КОН	Hg/HgO	1086 F g ⁻¹ at 3 A	96.4% retention after 10000 cycles at 10 Ag^{-1}	S11
NiV LDH@ZIF-67	0-0.4	6 М КОН	-	830.6 F g ⁻¹ at 1 A	120% retention at 10 A g ⁻¹ after 5000 cycles	S12
Ni ₂ CO ₃ (OH) ₂ @ZIF-67	-0.15-0.4	6 М КОН	Ag/AgCl	697 F g ⁻¹ at 30 mV s ⁻¹	-	S13

rGO@ZIF-67@NiAl-	0-0.36	6 M KOH	-	2291.6 F g ⁻¹ at 1 A	92% retention at 10 A g^{1}	S14
LDHs				g ⁻¹	after 4000 cycles	
ZIF-67@rGO	0-0.36	6 M KOH	-	90.5 F g $^{-1}$ at 1 A g $^{-1}$	-	S14
rGO@NiAl-LDHs	0-0.36	6 М КОН	-	573.1 F g ⁻¹ at 1 A	-	S14
				g ⁻¹		
α-CoMn _{0.05} (OH) _x /ZIF-67	0-0.5	3 М КОН	Hg/HgO	703.8 F g ⁻¹ at 0.3 A	96.2% retention at 500	This work
				g ⁻¹	mA cm ⁻² after 3500 cycles	

Abbreviation: Saturated calomel electrode: SCE, Ultra-stable Y zeolite: USY, Copper foam: CF.

References

- S1 C. Justin Raj, B. C. Kim, W. J. Cho, S. Park, H. T. Jeong, K. Yoo and K. H. Yu, J.
 Electroanal. Chem., 2015, **747**, 130–135.
- S2 F. Zhou, Q. Liu, J. Gu, W. Zhang and D. Zhang, *Electrochim. Acta*, 2015, **170**, 328–336.
- S3 Z. Gao, W. Yang, Y. Yan, J. Wang, J. Ma, X. Zhang, B. Xing and L. Liu, *Eur. J. Inorg. Chem.*, 2013, 2013, 4832–4838.
- S4 D. Zhang, Y. Shao, X. Kong, M. Jiang, D. Lei and X. Lei, *Electrochim. Acta*, 2016, 218, 294–302.
- X. Gong, J. P. Cheng, F. Liu, L. Zhang and X. Zhang, *J. Power Sources*, 2014, 267, 610–616.
- S6 T. Deng, Y. Lu, W. Zhang, M. Sui, X. Shi, D. Wang and W. Zheng, *Adv. Energy Mater.*,
 2018, 8, 1702294.
- S7 A. Hosseinian, A. H. Amjad, R. Hosseinzadeh-Khanmiri, E. Ghorbani-Kalhor, M.
 Babazadeh and E. Vessally, *J. Mater. Sci. : Mater. Electron.*, 2017, 28, 18040–18048.
- S8 Y. Wenping, S. Xinyue, L. Yan and H. Pang, J. Energy Storage, 2019, 26, 101018.
- S9 W. Zhang, Y. Tan, Y. Gao, J. Wu, J. Hu, A. Stein and B. Tang, *J. Appl. Electrochem.*, 2016,
 46, 441–450.
- S. Sundriyal, V. Shrivastav, S. Mishra and A. Deep, Int. J. Hydrogen Energy, 2020, 45, 30859–30869.
- S11 W. Zheng, S. Sun, Y. Xu, R. Yu and H. Li, *ChemElectroChem*, 2019, **6**, 3375–3382.
- S12 G. Wang, Y. Li, L. Xu, Z. Jin and Y. Wang, *Renew. Energy*, 2020, **162**, 535–549.
- S13 Y. Gao, J. Wu, W. Zhang, Y. Tan, J. Gao, B. Tang and J. Zhao, J. Appl. Electrochem.,

2015, **45**, 541–547.

S14 D. Guo, X. Song, L. Tan, H. Ma, W. Sun, H. Pang, L. Zhang and X. Wang, *Chem. Eng. J.*, 2019, **356**, 955–963.