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Equations
Vertical ionization potential (VIP): E(N-1) − E(N)                  Eq.S1
Vertical electron affinity (VEA): E(N) − E(N+1)                   Eq.S2
Electronegativity (χ): (VIP+VEA)/2                              Eq.S3
Chemical potential (μ): -χ                                       Eq.S4
Chemical hardness (η): VIP−VEA                                  Eq.S5
Softness (S): 1/η                                                   Eq.S6
Fukui functions for electrophilic attack f −(r) = ρN(r) − ρN-1(r)               Eq.S7
Local softness for electrophilic attack: s−(r) = Sf −(r)                       Eq.S8

Tables
Table.S 1 The solubility of H2BDC and NH2-H2BDC in water at different pH.

H2BDC NH2-H2BDC
pH=2 2.1±0.4 90.0±1.4
pH=3 3.1±0.2 88.0±3.3
pH=4 18.4±0.7 360.0±4.7
pH=5 538.3±2.2 >1000mg/L
pH=6 >1000mg/L >1000mg/L
pH=7 >1000mg/L >1000mg/L

Table.S 2 The μ (-χ) of phosphate species.
PO4

3- HPO4
2- H2PO4

- H3PO4

μ (-χ) -2.7 -3.0 -4.1 -5.1

Table.S 3 The μ (-χ) and η of ligands of MOFs.

L-bases I-BDC2- Br-BDC2- F-BDC2- COOH-BDC2- SO3H-BDC2- NO2-BDC2-

μ (-χ) -3.53 -3.54 -3.76 -3.81 -3.90 -4.34
η 5.00 5.02 4.86 4.53 4.67 4.08



Figures
Fig.S 1 The XRD patterns and FT-IR spectra of UiO-66, NH2-UiO-66, MIL-101(Fe) 
and NH2-MIL-101(Fe) in pure water at pH 2 and their ligands (H2BDC and NH2-
H2BDC).
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Fig.S 2 XPS analysis of NH2-UiO-66 before and after being treated in 3 mM solutions 
of F-, PO4

3-, AsO4
3- and SO4

2- at pH 4, respectively: F 1s (b), P 2p (b), As 2p (c) and S 
2p (d).
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Fig.S 3 FT-IR spectra of UiO-66 and NH2-UiO-66 after being treated in 3 mM solution 
of F-, PO4

3-, AsO4
3- and SO4

2- at pH 4, respectively.
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Fig.S 4 Local softness for electrophilic attack (s-) of L-bases.



Fig.S 5 Charge of coordinating atoms (CCA) of conjugate acid of different L-bases.

Fig.S 6 Distribution coefficient of phosphate.
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Fig.S 7 The structure and charge distribution of MOFs’ ligand.

Fig.S 8 The optimized structure of OH-BDC2- showed by Van Der Waals radius (a), 
the CCA of OH-H2BDC (b) and the optimized structure of OH-H2BDC/PO4

3- (c).

As for OH-UiO-66, the symmetry of its carboxy groups was not affected by the -OH 
(Fig.S 8a) and the μ(-χ) of OH-BDC2- was -3.58, which was slightly higher than that of 
BDC2- (-3.68). However, as shown in Fig.S 8b, one of the coordinating atom of OH-
H2BDC had obvious smaller negative charge (-0.231) than that of H2BDC (Fig.S 5). 
Therefore, it is hard to judge if OH-UiO-66 is more stable than UiO-66, only according 
to μ(-χ) and CCA. The pKa of -OH on OH-H2BDC is not found in the iBond database[1], 
but the pKa of -OH on different compounds is relatively high, such as salicylic acid 
(13.2), phenol (9.99) and p-Hydroxybenzoic acid (9.33), implying H-Bond can form 
between OH-H2BDC and PO4

3- in a wide range of pH. Beyond expectation, according 
to the optimized structure of OH-H2BDC with PO4

3- (Fig.S 8c), the H on -OH on OH-



H2BDC was grabbed by PO4
3-, instead of forming stable H-Bond between OH-H2BDC 

and PO4
3-. Apparently, -OH can not enhance the stability of MOFs by capturing L-

bases.
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