Supporting Information For:

Application of hard and soft acid base theory to uncover Lewis bases' destructiveness to UiO-66 type metal organic frameworks in aqueous solutions

Liangjie Wang^{a,b}, Juan Li^b, Luyao Cheng^b, Yonghui Song^{b,*}, Ping Zeng^{b,*}, Xianghua

Wen^{a,*}

^a School of Environment, Tsinghua University, Beijing 100084, China

^b State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China

*Corresponding author.

E-mail address: zengping@craes.org.cn; songyh@craes.org.cn; xhwen@tsinghua.edu.cn

Equations

Vertical ionization potential (VIP): E(N-1) – E(N)	Eq.S1
Vertical electron affinity (VEA): $E(N) - E(N+1)$	Eq.S2
Electronegativity (χ): (VIP+VEA)/2	Eq.S3
Chemical potential (μ): - χ	Eq.S4
Chemical hardness (η): VIP–VEA	Eq.S5
Softness (S): $1/\eta$	Eq.S6
Fukui functions for electrophilic attack $f^{-}(\mathbf{r}) = \rho_{N}(\mathbf{r}) - \rho_{N-1}(\mathbf{r})$	Eq.S7
Local softness for electrophilic attack: $s^{-}(\mathbf{r}) = Sf^{-}(\mathbf{r})$	Eq.S8

Tables

Table.S 1 The solubility of H₂BDC and NH₂-H₂BDC in water at different pH.

	H ₂ BDC	NH ₂ -H ₂ BDC
pH=2	2.1±0.4	90.0±1.4
pH=3	3.1±0.2	88.0±3.3
pH=4	18.4±0.7	360.0±4.7
pH=5	538.3±2.2	>1000mg/L
pH=6	>1000mg/L	>1000mg/L
pH=7	>1000mg/L	>1000mg/L

Table.S 2 The μ (- χ) of phosphate species.

	PO4 ³⁻	HPO ₄ ²⁻	H ₂ PO ₄ -	$\mathrm{H}_{3}\mathrm{PO}_{4}$
μ (-χ)	-2.7	-3.0	-4.1	-5.1

Table.S 3 The μ (- χ) and η of ligands of MOFs.

L-bases	I-BDC ²⁻	Br-BDC ²⁻	F-BDC ²⁻	COOH-BDC ²⁻	SO ₃ H-BDC ²⁻	NO ₂ -BDC ²⁻
μ (-χ)	-3.53	-3.54	-3.76	-3.81	-3.90	-4.34
η	5.00	5.02	4.86	4.53	4.67	4.08

Figures

Fig.S 1 The XRD patterns and FT-IR spectra of UiO-66, NH₂-UiO-66, MIL-101(Fe) and NH₂-MIL-101(Fe) in pure water at pH 2 and their ligands (H₂BDC and NH₂-H₂BDC).

Fig.S 2 XPS analysis of NH_2 -UiO-66 before and after being treated in 3 mM solutions of F⁻, PO_4^{3-} , AsO_4^{3-} and SO_4^{2-} at pH 4, respectively: F 1s (b), P 2p (b), As 2p (c) and S 2p (d).

Fig.S 3 FT-IR spectra of UiO-66 and NH₂-UiO-66 after being treated in 3 mM solution of F^- , PO_4^{3-} , AsO_4^{3-} and SO_4^{2-} at pH 4, respectively.

Fig.S 4 Local softness for electrophilic attack (s⁻) of L-bases.

Fig.S 5 Charge of coordinating atoms (CCA) of conjugate acid of different L-bases.

Fig.S 6 Distribution coefficient of phosphate.

Fig.S 7 The structure and charge distribution of MOFs' ligand.

Fig.S 8 The optimized structure of OH-BDC²⁻ showed by Van Der Waals radius (a), the CCA of OH-H₂BDC (b) and the optimized structure of OH-H₂BDC/PO₄³⁻ (c).

As for OH-UiO-66, the symmetry of its carboxy groups was not affected by the -OH (Fig.S 8a) and the $\mu(-\chi)$ of OH-BDC²⁻ was -3.58, which was slightly higher than that of BDC²⁻ (-3.68). However, as shown in Fig.S 8b, one of the coordinating atom of OH-H₂BDC had obvious smaller negative charge (-0.231) than that of H₂BDC (Fig.S 5). Therefore, it is hard to judge if OH-UiO-66 is more stable than UiO-66, only according to $\mu(-\chi)$ and CCA. The pKa of -OH on OH-H₂BDC is not found in the iBond database^[1], but the pKa of -OH on different compounds is relatively high, such as salicylic acid (13.2), phenol (9.99) and p-Hydroxybenzoic acid (9.33), implying H-Bond can form between OH-H₂BDC and PO₄³⁻ in a wide range of pH. Beyond expectation, according to the optimized structure of OH-H₂BDC with PO₄³⁻ (Fig.S 8c), the H on -OH on OH-

 H_2BDC was grabbed by PO_4^{3-} , instead of forming stable H-Bond between OH- H_2BDC and PO_4^{3-} . Apparently, -OH can not enhance the stability of MOFs by capturing L-bases.

Reference

[1] Internet bond-energy databank (pKa and BDE)--iBonD home page. http://ibond.chem.tsinghua.edu.cn