Thiophene Derivatives as Electrode Materials for High-Performance Sodium-Ion Batteries

Chao Ma,^a Liang-Yu Wang,^a Mou-Hai Shu,^a Cheng-Cheng Hou,^a Kai-Xue Wang,^{*ab}

and Jie-Sheng Chen*a

^aShanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

^bKey Laboratory of Materials Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou, 450001, PR China

Corresponding Author

* E-mail Address: k.wang@sjtu.edu.cn (KXW), chemcj@sjtu.edu.cn (JSC)

Experimental section

The synthesis procedure of STTDC was shown in Figure S2.

Synthesis of STTDC

Sodium thieno[3,2-*b*]thiophene-2,5-dicarboxylate (STTDC) was prepared by using thieno[3,2-b]thiophene (TT) as a precursor through the procedure illustrated in **Figure S2**. First, 2,5-dibromothieno[3,2-*b*]thiophene (DBTT) was synthesized by one step reaction of TT with N-bromosuccinimide (NBS).¹ DBTT should be stored in dark and at low temperature. Then, 1.42 g of DBTT and 1.62 g of dried copper (I) cyanide were dissolved in 20 mL of dry DMF. After refluxed under nitrogen for 70 h, the reaction mixture was poured into ice-water. The solid precipitation was collected by filtration and washed with water. The solid was stirred in water containing ethylene-

diamine (50 mL) for 1 h. Finally, thieno[3,2-*b*]thiophene-2,5-dicarbonitrile (TTDC) was prepared by filtration, washing with water and drying.²

0.41 g of TTDC was dispersed in NaOH aqueous solution (1.28 g NaOH dissolved in 20 mL H₂O). The mixture was refluxed under vigorously stirring for 35 h. After cooling down to room temperature, active carbon was added. The whole mixture was refluxed for an additional 1 h. Subsequently, the mixture was filtered and washed with NaOH solution and then water. 6 M HCl was added to the filtrate dropwise to give white precipitate. After filtered and washed by water, the precipitate was dried at 65 °C to obtain 2,5-thieno[3,2-b]thiophene dicarboxylic acid (TTDCA). The ¹H and ¹³C NMR spectrums were shown in **Figure S3**.

¹H-NMR (400 MHz, DMSO-*d*6): δ 13.5, 8.2 (s, 2H)

¹³C-NMR (75 MHz, DMSO-d6): δ 126.8, 139.9, 142.7, 163.5

TTDCA (0.50 g) and NaOH (0.23 g) were added into 15 mL methyl alcohol (MeOH) at room temperature under constant magnetic stirring for overnight. The mixture was filtered and washed with MeOH three times. After dried in vacuum at 80 °C for 10 h, sodium thieno[3,2-b]thiophene-2,5-dicarboxylate (STTDC) was obtained. *Characterization*

Scanning electron microscopy (SEM) observation was performed on a FEI Nova NanoSEM 2300. ¹H and ¹³C NMR spectra were recorded on a Bruker 400 spectrometer. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTs) analyses were performed on an FTIR spectrometer (PerkinElmer Frontier FT-IR Spectrometer) from 4000 to 650 cm⁻¹. The working electrodes were made by mixing 60 wt% the active material, 30 wt% conducting agent (Super P) and 10 wt% binder (sodium alginate, SA). Then the slurry was spread onto a copper foil and dried at 80 °C for 24 h in a vacuum drying oven. The electrode was cut into discs of 12 mm in diameter and pressed at 6 MPa. The mass loading of STTDC is about 0.2 mg cm⁻². A CR2016 type coin half-cell battery was assembled in an Ar-filled glove-box. Sodium metal was used as the counter electrode, and glass-fiber (GF) as the separator, and 1.0 M NaClO₄ in a mixture of ethylene carbonate (EC) and propylene carbonate (PC) (1:1 in volume) with fluoroethylene carbonate (FEC, 5 wt%) as the electrolyte.

Solid-state sodium-ion batteries are assembled as follows: PEO (molecular weights M_n=600000) and NaClO₄ were dissolved in tetrahydrofuran at a molar ratio of EO:Na=8:1. The Al₂O₃ nano powder and PEO(NaClO₄)/THF solution with weight ratio of 4:1 (based on the solid content) were mixed homogeneously, and the mixture was cast to form a solid electrolyte film in an argon-filled glovebox. The solid electrolyte film was cut into the discs of 19 mm in diameter. A CR2016 type coin solid-state sodium-ion battery was assembled in an Ar-filled glovebox. Thioindigo was used as working electrode, and sodium metal as the counter electrode, and PEO-NaClO₄-Al₂O₃ as solid-state electrolyte. Galvanostatic charge-discharge experiments were conducted on a NEWARE cell testing system (CT-4800, Shenzheng, China). The AC impedance measurements and CV (cyclic voltammetry) were carried out using an Autolab PGSTAT302N. A.C. impedance spectrums were measured with a frequency range from 0.1 Hz to100 KHz. CV measurement was performed within the

range of 0.01-3 V at a scanning rate of 0.1 mV s⁻¹.

Computational Methods

The first-principles calculations were conducted within the formalism of spinpolarization density functional theory (DFT). The quantum chemical calculation analyses of the LUMO/HOMO of Na_x-STTDC (x=0, 2, 4, 6). By using the Gaussian 09 package, the quantum chemical calculations at the level of M06/6-31G+ (d, p) were carried out to obtain molecular orbital distributions of Na_x-STTDC (x=0, 2, 4, 6).

Based on the change of Gibbs free energy, the intercalation/deintercalation voltages of Na_x-STTDC (x=0, 2, 4, 6) were further calculated with the reference to Na

metal. The equation of
$$V^{Na_{x+2}c_{8}H_{2}O_{4}S_{2}} = -\frac{G_{Na_{x+2+n}c_{8}H_{2}O_{4}S_{2}} - G_{Na_{x+2}c_{8}H_{2}O_{4}S_{2}} - G_{nNa}}{n}$$
 is

used to obtain the discharge voltage,^{3,4} where G is the Gibbs free energy.

Figure S1 Molecular structure and reversible Na-ion insertion/extraction mechanism of STTDC.

Figure S2 Synthesis route diagram of the STTDC

Thieno[3,2-b]thiophene-2,5-dicarboxylic acid (TTDCA)

Figure S3 ¹H (top) and ¹³C (bottom) NMR spectra of TTDCA

Figure S4 The dissolvability test of STTDC in electrolyte.

Figure S5 (a-b) Top- and (c) side-view SEM images of the STTDC electrode after

recrystallization.

Figure S6 Molecular structure and reversible Na-ion insertion/extraction mechanism of tetrathiafulvalene, thioindigo and sodium dithieno[3,2-b:2',3'-d]thiophene-2,6-dicarboxylate.

Figure S7 Cycling performance of thioindigo at a current density of 50 mA g^{-1} under 55 °C. The test was performed with a solid-state sodium-ion battery assembled with PEO-NaClO₄-Al₂O₃ as the solid-state electrolyte.

Table S1 Coordinates of molecular structures

All coordinates are reported as XYZ Cartesian coordinates. Converged geometries and the thermochemistriy were also obtained from M06/6-31+G(d,p) level of theory. They are stated in Hartrees units. All energies reported were calculated using the GAUSSIAN 09 Revision-D.01 computational chemistry package.

STTDC

Table S1a

Standard orientation					
Center	Element	Coo	ordinates (Angstro	oms)	
Number	Symbol	Х	Y	Ζ	
1	С	-2.28365	0.045518	0.000024	
2	С	-1.42697	1.115092	0.000007	
3	С	-0.07658	0.694224	-0.000014	
4	С	0.076586	-0.69422	-0.000001	
5	С	2.283653	-0.04552	-0.000063	
6	С	1.426968	-1.11509	-0.000031	
7	Н	-1.78928	2.137517	-0.000002	
8	Н	1.789283	-2.13752	-0.000032	
9	S	-1.46263	-1.50055	0.000047	
10	S	1.462634	1.500556	-0.000056	
11	С	-3.76263	0.090337	0.000025	
12	0	-4.39082	-1.01047	0.000195	
13	0	-4.32116	1.226957	0.000146	
14	С	3.76263	-0.09033	-0.000102	
15	0	4.390822	1.010466	-0.000162	
16	0	4.321154	-1.22696	-0.000128	
17	Na	-6.25717	0.172038	0.000286	
18	Na	6.257169	-0.17205	-0.000221	

Electronic Energy (EE) =-1727.678830

Table S1b

	S	Standard orientatic	n		
Center	Element	Coordinates (Angstroms)			
Number	Symbol	Х	Y	Ζ	
1	С	-2.34441	0.219859	0.007397	
2	С	-1.32896	1.145919	-0.40913	
3	С	-0.06309	0.662598	-0.28176	
4	С	0.063286	-0.66293	0.281268	
5	С	2.34453	-0.22043	-0.00845	
6	С	1.329132	-1.14637	0.408383	
7	Н	-1.61123	2.106316	-0.83123	
8	Н	1.611398	-2.10677	0.830481	
9	S	-1.54398	-1.23177	0.789239	
10	S	1.544219	1.23147	-0.78967	
11	С	-3.74025	0.376359	-0.01189	
12	Ο	-4.51069	-0.68646	0.242193	
13	0	-4.29625	1.494895	-0.32523	
14	С	3.74036	-0.37621	0.012277	
15	0	4.510564	0.686868	-0.24131	
16	0	4.2966	-1.49453	0.326187	
17	Na	-6.16711	0.734607	0.401326	
18	Na	6.167055	-0.73413	-0.40137	
19	Na	-3.29247	-1.94163	-1.08764	
20	Na	3.291671	1.941734	1.088075	

Electronic Energy (EE) =-2052.224078

Table S1c

	Standard orientation					
Center	Element	Coc	ordinates (Angstro	oms)		
Number	Symbol	Х	Y	Ζ		
1	С	-2.32016	0.440253	0.102841		
2	С	-1.33479	0.848931	-0.86418		
3	С	-0.06774	0.423633	-0.58232		
4	С	0.080395	-0.40489	0.602284		
5	С	2.330909	-0.4223	-0.08401		
6	С	1.346112	-0.8378	0.878737		
7	Н	-1.63727	1.419652	-1.73838		
8	Н	1.648097	-1.41398	1.749443		
9	S	-1.49354	-0.51968	1.444952		
10	S	1.503797	0.527983	-1.43081		
11	С	-3.72288	0.352537	-0.11258		
12	Ο	-4.42694	-0.51832	0.578408		
13	Ο	-4.28711	1.096938	-0.98743		
14	С	3.734875	-0.34733	0.119586		
15	Ο	4.440821	0.514946	-0.58252		
16	Ο	4.301803	-1.09206	0.992693		
17	Na	-6.22635	0.368236	-0.35148		
18	Na	6.240459	-0.4233	0.291448		
19	Na	-3.11695	-2.29961	0.010899		
20	Na	3.133192	2.293605	-0.00513		
21	Na	-0.90227	2.340116	1.289063		
22	Na	0.809748	-2.32168	-1.29014		

Electronic Energy (EE) =-2376.787777

Table S1d

Cantan	E 1	Standard orient	ation	
Center	Element	Coc	ordinates (Angstro	ms)
Number	Symbol	<u>X</u>	Y	Z
1	С	-2.24934	0.452986	-0.50443
2	С	-1.3284	-0.44778	-1.13735
3	С	-0.0808	-0.44657	-0.56322
4	С	0.081183	0.445913	0.564292
5	С	2.249723	-0.45353	0.505494
6	С	1.328856	0.447278	1.138254
7	Н	-1.63215	-1.07179	-1.97525
8	Н	1.632715	1.071305	1.976116
9	S	-1.36095	1.491204	0.695498
10	S	1.361386	-1.49168	-0.69452
11	С	-3.6538	0.445404	-0.5423
12	Ο	-4.33669	1.20848	0.267079
13	Ο	-4.27554	-0.39911	-1.31867
14	С	3.654235	-0.44504	0.542692
15	Ο	4.337326	-1.20734	-0.26714
16	0	4.27565	0.399841	1.318894
17	Na	-6.21711	0.363034	-0.56129
18	Na	6.217345	-0.36035	0.560941
19	Na	-3.57986	0.255894	2.218608
20	Na	3.579693	-0.25678	-2.21895
21	Na	0.60465	2.025922	-1.62403
22	Na	-0.60658	-2.02761	1.623416
23	Na	3.649959	2.301318	0.193896
24	Na	-3.65023	-2.30132	-0.19609

Electronic Energy (EE) =-2701.393836

No.	Carbon additives (wt%)	Discharge capacity 1 st /2 nd (mAh g ⁻¹)	Rates	Capacity (mAh g ⁻ ¹)/ Cycle number	Ref.
1	40%SP	1195/284	100 mA g ⁻¹	249/100	5
2	40%SP	375/290	50 mA g ⁻¹	204/50	6
3	40%SP	799.9/503	0.1 A g ⁻¹	391/400	7
4	37.5%CB	700/233	30 mA g ⁻¹	202/5	8
5	30%SP	191/233	0.02 C	90/100	9
6	20%SP	~850/534	100 mA g ⁻¹	440/100	10
7	20%CB	230	0.01 A g ⁻¹	180/40	11
8	35%SP	801/240	10 mA g ⁻¹	200/50	12
9	50%AB	133/	200 mA g ⁻¹	~140/500	13
10	30%AB	351/201	25 mA g ⁻¹	131/120	14
11	20%SP	150/138	200 mA g ⁻¹	108/300	15
12	30%KB	275/-	25mA g ⁻¹	130/100	16
13	30%CB	1100/320	500 mA g ⁻¹	95/100	17
14	30%AB	126/121	100 mA g ⁻¹	105/50	18
15	30%SP	~295/295(100th)	200 mA g ⁻¹	210/1400	19
16	28.6%SP	430/208	0.1 C	170/150	20
17	40%AB	248/240	250 mA g ⁻¹	105/100	21
18	30%SP	697/425	50 mA g ⁻¹ 2 A g ⁻¹	425/40 286/4000	Our work

 Table S2 Electrochemical performance of organic electrode materials reported.

Table S3 Coordinates of molecular structures

All coordinates are reported as XYZ Cartesian coordinates. Converged geometries and the thermochemistriy were also obtained from M06/6-31+G(d,p) level of theory. They are stated in Hartrees units. All energies reported were calculated using the GAUSSIAN 09 Revision-D.01 computational chemistry package.

Table S3a

a Tetrathiafulvalene

Standard orientation					
Center	Element	Co	ordinates (Angstrom	s)	
Number	Symbol	Х	Y	Ζ	
1	С	0.6749020	0.0000370	-0.0002110	
2	С	-3.1836500	0.6682130	0.0004530	
3	С	-3.1836410	-0.6682500	0.0004810	
4	Н	-4.0763590	1.2849650	0.0007240	
5	Н	-4.0763400	-1.2850180	0.0007540	
6	С	-0.6747210	-0.0000090	-0.0001710	
7	S	-1.6378830	1.4953570	-0.0002470	
8	S	-1.6378600	-1.4953760	-0.0000680	
9	S	1.6376000	1.4954370	-0.0001800	
10	S	1.6376550	-1.4953720	-0.0003570	
11	С	3.1841000	-0.6682440	0.0005570	
12	Н	4.0765470	-1.2853580	0.0009430	
13	С	3.1842270	0.6681540	0.0005960	
14	Н	4.0766540	1.2852780	0.0009800	

Electronic Energy (EE) =-1823.455762

Standard orientation					
Center	Element	Coordinates (Angstroms)			
Number	Symbol	Х	Y	Ζ	
1	С	0.4084510	-0.0077290	0.6649180	
2	С	-2.9387350	0.6756050	0.0554580	
3	С	-2.9404000	-0.6694240	0.0389410	
4	Н	-3.7692080	1.2890200	0.4010830	
5	Н	-3.7726240	-1.2891600	0.3687610	
6	С	-0.4092320	0.0096220	-0.6635290	
7	S	-1.5226890	1.4496920	-0.7159320	
8	S	-1.5254170	-1.4274790	-0.7506450	
9	S	1.5230910	1.4307330	0.7532680	
10	S	1.5254290	-1.4470160	0.7132710	
11	С	2.9405470	-0.6684570	-0.0566940	
12	Н	3.7719520	-1.2804870	-0.4025170	
13	С	2.9386110	0.6763790	-0.0389010	
14	Н	3.7682850	1.2994170	-0.3688390	
15	Na	-1.3553530	-0.0387460	2.2009500	
16	Na	1.3553100	0.0196870	-2.2008620	

Electronic Energy (EE) =-2148.021803

Table S4a

 ${\it b}$ Thioindigo

	Standard orientation					
Center	Element		Coordinates (Angstr	roms)		
Number	Symbol	Х	Y	Ζ		
1	С	3.1216020	-0.7717070	-0.0239250		
2	С	3.0293790	0.6156430	0.0353320		
3	С	4.1795670	1.3989300	0.0535760		
4	С	5.4202130	0.7740190	0.0023130		
5	С	5.4996060	-0.6204090	-0.0601760		
6	С	4.3529840	-1.4120250	-0.0718210		
7	С	1.6476690	1.1315390	0.0960380		
8	Н	4.0776170	2.4808470	0.1069610		
9	Н	6.3308360	1.3668420	0.0118200		
10	Н	6.4746140	-1.1006290	-0.0998290		
11	Н	4.4235780	-2.4959840	-0.1173580		
12	С	0.6798560	-0.0281280	0.0088680		
13	С	-0.6798560	-0.0281280	-0.0088670		
14	С	-1.6476690	1.1315390	-0.0960360		
15	С	-3.0293790	0.6156430	-0.0353320		
16	С	-3.1216020	-0.7717070	0.0239250		
17	С	-4.1795670	1.3989300	-0.0535770		
18	С	-4.3529840	-1.4120250	0.0718210		
19	С	-5.4202130	0.7740190	-0.0023140		
20	Н	-4.0776170	2.4808470	-0.1069630		
21	С	-5.4996060	-0.6204090	0.0601750		
22	Н	-4.4235780	-2.4959840	0.1173580		
23	Н	-6.3308360	1.3668420	-0.0118220		
24	Н	-6.4746140	-1.1006290	0.0998280		
25	0	1.3552230	2.2989820	0.2340090		
26	0	-1.3552230	2.2989820	-0.2340080		
27	S	-1.5433820	-1.5731320	0.0250900		
28	S	1.5433820	-1.5731320	-0.0250900		

Electronic Energy (EE) =-1560.788762

Table S4b

	Standard orientation				
Center	Element	Co	oordinates (Angstron	ns)	
Number	Symbol	Х	Y	Ζ	
1	С	-3.1940280	0.7694280	-0.3966950	
2	С	-2.9295260	-0.2683100	0.5150820	
3	С	-3.9917470	-0.9882630	1.0742860	
4	С	-5.2931940	-0.6647010	0.7248940	
5	С	-5.5464540	0.3777360	-0.1818550	
6	С	-4.5059250	1.1015230	-0.7472370	
7	С	-1.5035320	-0.4772270	0.7802920	
8	Н	-3.7640580	-1.7834040	1.7818070	
9	Н	-6.1265820	-1.2132480	1.1578630	
10	Н	-6.5729670	0.6254380	-0.4433970	
11	Н	-4.7049340	1.9129860	-1.4444400	
12	С	-0.7236810	0.4170130	0.0336250	
13	С	0.7235000	0.4183080	-0.0476480	
14	С	1.5058180	-0.4850990	-0.7804560	
15	С	2.9308420	-0.2727260	-0.5123360	
16	С	3.1917250	0.7755010	0.3886040	
17	С	3.9954030	-0.9994640	-1.0581840	
18	С	4.5021930	1.1116650	0.7405950	
19	С	5.2954090	-0.6721370	-0.7068700	
20	Н	3.7705130	-1.8029020	-1.7571870	
21	С	5.5450300	0.3810380	0.1884410	
22	Н	4.6984260	1.9312510	1.4290260	
23	Н	6.1305120	-1.2261760	-1.1294190	
24	Н	6.5704600	0.6315360	0.4515320	
25	Ο	-1.0681380	-1.4102640	1.5501180	
26	О	1.0729980	-1.4275080	-1.5401640	
27	S	1.7161050	1.5442740	0.9476930	
28	S	-1.7208080	1.5322920	-0.9696270	
29	Na	1.0734380	-1.2936770	1.8382070	
30	Na	-1.0712580	-1.3194200	-1.8256340	

Electronic Energy (EE) =-1885.487911

Table S4c

	Standard orientation				
Center	Element	Coo	ordinates (Angstron	ns)	
Number	Symbol	Х	Y	Ζ	
1	С	-3.1345420	-1.0199140	0.1312990	
2	С	-3.0218680	0.3506560	-0.1336700	
3	С	-4.1823010	1.1166710	-0.2844160	
4	С	-5.4208470	0.5053430	-0.1614820	
5	С	-5.5153340	-0.8676580	0.1077260	
6	С	-4.3725670	-1.6450250	0.2525290	
7	С	-1.6485960	0.8346210	-0.2444430	
8	Н	-4.0839540	2.1780880	-0.5020020	
9	Н	-6.3294410	1.0921030	-0.2743080	
10	Н	-6.4936910	-1.3324910	0.2049810	
11	Н	-4.4432800	-2.7105560	0.4594800	
12	С	-0.7279160	-0.2046380	-0.0253670	
13	С	0.7275780	-0.2044210	0.0244950	
14	С	1.6484130	0.8344670	0.2447230	
15	С	3.0216230	0.3504310	0.1334700	
16	С	3.1342530	-1.0198450	-0.1329870	
17	С	4.1820720	1.1161680	0.2854850	
18	С	4.3722590	-1.6449230	-0.2545190	
19	С	5.4206070	0.5048720	0.1622640	
20	Н	4.0837600	2.1773270	0.5043340	
21	С	5.5150570	-0.8678230	-0.1084660	
22	Н	4.4429450	-2.7102400	-0.4625730	
23	Н	6.3292130	1.0914180	0.2760960	
24	Н	6.4934000	-1.3326560	-0.2058530	
25	Ο	-1.3847430	2.0794290	-0.4878680	
26	Ο	1.3849620	2.0789730	0.4902300	
27	S	1.5575980	-1.7818580	-0.2723430	
28	S	-1.5579620	-1.7822930	0.2694380	
29	Na	0.5126360	2.5418560	-1.5885300	
30	Na	-0.5123650	2.5352340	1.5933880	
31	Na	-0.1811820	-0.8771890	-2.6181200	
32	Na	0.1825260	-0.8842350	2.6175870	

Electronic Energy (EE) =-2210.028215

Table S5a

C Sodium dithieno[3,2-b:2',3'-d]thiophene-2,6-dicarboxylate

Standard orientation Coordinates (Angstroms) Center Element Symbol Number Х Ζ Y 1 С -0.7085740 -0.000030 0.0040770 2 С 0.0000580 -1.23802501.2939330 3 С -3.1778180 0.0586730 -0.0000160 S -0.0000880 4 -1.9560200 -1.1960360 5 S 0.0000600 0.0001180 2.5363520 С 6 1.2380850 1.2939510 0.0000270 7 С 0.7086670 0.0040200 -0.0000150 С 8 2.6501230 1.3239810 0.0000180 9 Η 3.2811700 2.2064010 0.0001020 S 10 1.9559510 -1.1960610 -0.0000010 С 11 3.1778300 0.0585920 0.0000370 С 12 4.6094130 -0.3123930 0.0000050 13 0 4.9042040 -1.5450340 -0.0000220 14 0 -0.0000130 5.4627820 0.6229840 15 -0.3122440 С -4.6094500 -0.0000280 16 0 -4.9042770 -1.5448910 0.0005140 17 0 0.6231570 -0.0005640 -5.4628020 18 С 0.0000500 -2.6500390 1.3240580 19 Η -3.2809930 2.2065450 0.0001050 20 Na -7.0232450 -0.9269430 0.0000090 21 7.0231930 -0.9267520 -0.0000810 Na

Electronic Energy (EE) =-2202.000048

Table S5b

		Standard orientation	on	
Center	Element	Coc	ordinates (Angstro	oms)
Number	Symbol	Х	Y	Ζ
1	С	-0.6795950	0.2150550	-0.0461930
2	С	-1.2665760	1.5279310	-0.0941580
3	С	-3.2277170	0.2524970	-0.2122460
4	S	-1.9226810	-1.0202430	-0.2285470
5	S	0.0000740	2.7764860	0.0004340
6	С	1.2666160	1.5278190	0.0948700
7	С	0.6795480	0.2149820	0.0468640
8	С	2.6272930	1.5513640	0.2044570
9	Н	3.2525290	2.4384410	0.2432670
10	S	1.9225170	-1.0205040	0.2287970
11	С	3.2276350	0.2521920	0.2131610
12	С	4.5934750	-0.0902790	0.1602610
13	О	4.9324110	-1.3467090	-0.1312750
14	О	5.5130910	0.7878240	0.3352080
15	С	-4.5936340	-0.0898230	-0.1597490
16	О	-4.9328170	-1.3462670	0.1315080
17	О	-5.5130780	0.7883200	-0.3351730
18	С	-2.6272640	1.5515970	-0.2036320
19	Н	-3.2524160	2.4387410	-0.2422450
20	Na	-6.9513240	-0.7972600	-0.5530320
21	Na	6.9517350	-0.7978630	0.5504310
22	Na	-3.5555210	-1.4399760	1.8473480
23	Na	3.5556360	-1.4371150	-1.8480120

Electronic Energy (EE) =-2526.546989

Table S5c

	Standard orientation				
Center	Element	Coo	rdinates (Angstro	oms)	
Number	Symbol	Х	Y	Ζ	
1	С	-0.6870000	0.1621170	-0.0110730	
2	С	-1.2728200	1.4794900	-0.1275780	
3	С	-3.2113600	0.1912690	-0.3210890	
4	S	-1.9050210	-1.0709370	-0.3658620	
5	S	-0.0000180	2.7429190	-0.0015630	
6	С	1.2728800	1.4797330	0.1262260	
7	С	0.6870850	0.1621630	0.0117780	
8	С	2.6308340	1.4907060	0.3247540	
9	Н	3.2617390	2.3733000	0.3786110	
10	S	1.9052410	-1.0702410	0.3682080	
11	С	3.2115500	0.1918930	0.3208240	
12	С	4.5796210	-0.1669730	0.1890380	
13	О	4.8782230	-1.4023370	-0.1613240	
14	О	5.5019230	0.6976350	0.3705690	
15	С	-4.5794890	-0.1673690	-0.1893680	
16	О	-4.8782990	-1.4022320	0.1625310	
17	О	-5.5016930	0.6970270	-0.3725090	
18	С	-2.6306860	1.4901140	-0.3267100	
19	Н	-3.2616090	2.3725960	-0.3821760	
20	Na	-6.9788870	-0.8806960	-0.3204190	
21	Na	6.9791370	-0.8801800	0.3192430	
22	Na	-3.4334200	-1.4689070	1.9247890	
23	Na	3.4326400	-1.4726450	-1.9223680	
24	Na	-0.2893620	0.4868780	-2.5406730	
25	Na	0.2891410	0.4907000	2.5408870	

Electronic Energy (EE) =-2851.106564

Table S5d

Standard orientation							
Center	Element	Coordinates (Angstroms)					
Number	Symbol	Х	Y	Ζ			
1	С	0.6383840	0.0072760	0.2483170			
2	С	1.2032950	1.3259610	0.4180230			
3	С	3.1165960	0.0404260	0.8162660			
4	S	1.8259560	-1.2235960	0.6845110			
5	S	-0.0001030	2.5915410	0.0007610			
6	С	-1.2041520	1.3271430	-0.4180070			
7	С	-0.6390570	0.0079850	-0.2527330			
8	С	-2.5462100	1.3444540	-0.6988590			
9	Н	-3.1495290	2.2393170	-0.8351910			
10	S	-1.8273090	-1.2216060	-0.6905220			
11	С	-3.1180910	0.0428000	-0.8169030			
12	С	-4.4751090	-0.3304090	-0.7466970			
13	О	-4.7971010	-1.5889630	-0.6405690			
14	О	-5.3975480	0.5868820	-0.6831980			
15	С	4.4736560	-0.3327510	0.7477520			
16	О	4.7957130	-1.5910670	0.6386590			
17	О	5.3964050	0.5845630	0.6887490			
18	С	2.5448870	1.3424970	0.7011970			
19	Н	3.1478490	2.2369840	0.8415230			
20	Na	6.9328970	-1.0103940	0.5581680			
21	Na	-6.9339940	-1.0087130	-0.5541540			
22	Na	3.7758140	-1.9723140	-1.4002430			
23	Na	-3.7735950	-1.9763450	1.3954040			
24	Na	-1.4491910	0.7219460	2.2936540			
25	Na	1.4532980	0.7289880	-2.2945190			
26	Na	-4.8290300	1.3746570	1.4085860			
27	Na	4.8310780	1.3784150	-1.4015860			

Electronic Energy (EE) =-3175.709375

Standard orientation							
Center	Element	Coordinates (Angstroms)					
Number	Symbol	Х	Y	Ζ			
1	С	-0.6865720	0.0042620	0.2726730			
2	С	-1.2646760	1.3147000	-0.0136020			
3	С	-3.2354920	0.0746590	-0.3608830			
4	S	-1.9314670	-1.2228030	-0.3198250			
5	S	-0.0003460	2.5765240	0.0035120			
6	С	1.2640390	1.3148020	0.0163420			
7	С	0.6863290	0.0055990	-0.2771440			
8	С	2.5802400	1.3735040	0.3915130			
9	Н	3.1274210	2.2849920	0.6243220			
10	S	1.9310630	-1.2243170	0.3107390			
11	С	3.2345730	0.0733930	0.3610070			
12	С	4.5601570	-0.2654390	0.6669310			
13	О	4.9119500	-1.5251610	0.7483940			
14	О	5.4742960	0.6643340	0.7702200			
15	С	-4.5614700	-0.2633540	-0.6658510			
16	О	-4.9129170	-1.5228820	-0.7520930			
17	О	-5.4762070	0.6664480	-0.7636050			
18	С	-2.5814800	1.3750710	-0.3867030			
19	Н	-3.1290640	2.2876560	-0.6141890			
20	Na	-7.0201230	-0.9242650	-1.0208460			
21	Na	7.0185520	-0.9267040	1.0234470			
22	Na	-4.2454070	-2.1756840	1.2952920			
23	Na	4.2485910	-2.1709850	-1.3027250			
24	Na	2.5084600	0.5642290	-2.3211650			
25	Na	-2.5066460	0.5562230	2.3227600			
26	Na	5.5839730	1.3855530	-1.3722160			
27	Na	-5.5830240	1.3810560	1.3807840			
28	Na	0.9436500	0.1056070	2.4424050			
29	Na	-0.9423200	0.1187690	-2.4450070			

Electronic Energy (EE) =-3500.261887

Table S5f

Standard orientation						
Center	Element	Coordinates (Angstroms)				
Number	Symbol	Х	Y	Ζ		
1	С	-0.6805960	-0.0359720	0.4446630		
2	С	-1.2790850	-0.0189360	1.7501060		
3	С	-3.2057510	0.1184250	0.4294310		
4	S	-1.8929560	0.0227270	-0.8206120		
5	S	-0.0009440	-0.0251520	3.0096060		
6	С	1.2778150	-0.0095470	1.7507490		
7	С	0.6800670	0.0297900	0.4455190		
8	С	2.6455790	-0.1047590	1.7506950		
9	Н	3.2806340	-0.2009780	2.6286420		
10	S	1.8931430	-0.0068340	-0.8199680		
11	С	3.2052630	-0.1250360	0.4291460		
12	С	4.5134780	-0.4433430	0.0050150		
13	О	4.6983190	-0.8000450	-1.2481790		
14	Ο	5.5145700	-0.2782300	0.7978760		
15	С	-4.5136210	0.4436390	0.0099710		
16	О	-4.6980820	0.8191720	-1.2379400		
17	О	-5.5150380	0.2665490	0.7997840		
18	С	-2.6468730	0.0758420	1.7507940		
19	Н	-3.2824100	0.1562820	2.6299890		
20	Na	-6.9790700	0.4085910	-0.9201520		
21	Na	6.9784220	-0.3918110	-0.9240160		
22	Na	-4.4825850	-1.2188280	-2.5087940		
23	Na	4.4870790	1.2542530	-2.4965680		
24	Na	1.1794330	3.0540700	-0.9248450		
25	Na	-1.1720100	-3.0397170	-0.9709810		
26	Na	5.0005710	2.0163830	0.9274860		
27	Na	-5.0059900	-2.0301750	0.8971530		
28	Na	1.0858590	-2.8038320	1.5223640		
29	Na	-1.0864320	2.7786420	1.5594980		
30	Na	3.1154670	-2.5731350	-1.4007790		
31	Na	-3.1172810	2.5958000	-1.3650840		

Electronic Energy (EE) =-3824.825356

- M. Dogru, M. Handloser, F. Auras, T. Kunz, D. Medina, A. Hartschuh, P. Knochel and T. Bein, *Angew. Chem. Int. Ed.*, 2013, **125**, 2992-2996.
- D. A. Patrick, D. W. Boykin, W. D. Wilson, F. A. Tanious, J. Spychala, B. C. Bender, J. E. Hall, C. C. Dykstra, K. A. Ohemeng and R. R. Tidwell, *Eur. J. Med. Chem.*, 1997, **32**, 781-793.
- 3. M. A. Sk and S. Manzhos, J. Power Sources, 2016, 324, 572-581.
- 4. Y. Chen, Z. Wu and S. Sun, J. Phys. Chem. C, 2014, 118, 21813-21818.
- C. Ma, X. Zhao, L. Kang, K. X. Wang, J. S. Chen, W. Zhang and J. Liu, Angew. Chem. Int. Ed., 2018, 57, 8865-8870.
- C. L. Wang, Y. Xu, Y. G. Fang, M. Zhou, L. Y. Liang, S. Singh, H. P. Zhao,
 A. Schober and Y. Lei, *J. Am. Chem. Soc.*, 2015, **137**, 3124-3130.
- S. Xu, H. Li, Y. Chen, Y. Wu, C. Jiang, E. Wang and C. Wang, *J. Mater.* Chem. A, 2020, 8, 23851-23856.
- Y. Park, D. S. Shin, S. H. Woo, N. S. Choi, K. H. Shin, S. M. Oh, K. T. Lee and S. Y. Hong, *Adv. Mater.*, 2012, 24, 3562-3567.
- S. Renault, V. A. Mihali, K. Edstrom and D. Brandell, *Electrochem. Commun.*, 2014, 45, 52-55.
- M.-S. Kim, M. Lee, M.-J. Kim, Y. K. Jeong, J. K. Park and S.-M. Paek, J. Mater. Chem. A, 2020, 8, 17790-17799.
- K. Sakaushi, E. Hosono, G. Nickerl, T. Gemming, H. Zhou, S. Kaskel and J. Eckert, *Nat. Commun.*, 2013, 4, 1485-1491.
- 12. A. Abouimrane, W. Weng, H. Eltayeb, Y. Cui, J. Niklas, O. Poluektov and K.

Amine, Energy Environ. Sci., 2012, 5, 9632-9638.

- S. Eder, D. J. Yoo, W. Nogala, M. Pletzer, A. S. Bonilla, A. J. P. White, K. E. Jelfs, M. Heeney, J. W. Choi and F. Glocklhofer, *Angew. Chem. Int. Edit.*, 2020, 59, 12958-12964.
- H.-g. Wang, S. Yuan, Z. Si and X.-b. Zhang, *Energy Environ. Sci.*, 2015, 8, 3160-3165.
- W. Deng, Y. Shen, J. Qian, Y. Cao and H. Yang, ACS Appl. Mater. Interfaces, 2015, 7, 21095-21099.
- J. Li, M. Luo, Z. Ba, Z. Wang, L. Chen, Y. Li, M. Li, H.-B. Li, J. Dong, X.
 Zhao and Q. Zhang, J. Mater. Chem. A, 2019, 7, 19112-19119.
- Z. Li, J. Zhou, R. Xu, S. Liu, Y. Wang, P. Li, W. Wu and M. Wu, *Chem. Eng.* J., 2016, **287**, 516-522.
- H. Banda, D. Damien, K. Nagarajan, M. Hariharan and M. M. Shaijumon, J. Mater. Chem. A, 2015, 3, 10453-10458.
- Y. Chen, H. Li, M. Tang, S. Zhuo, Y. Wu, E. Wang, S. Wang, C. Wang and W. Hu, *J. Mater. Chem. A*, 2019, 7, 20891-20898.
- A. Choi, Y. K. Kim, T. K. Kim, M. S. Kwon, K. T. Lee and H. R. Moon, J. Mater. Chem. A, 2014, 2, 14986-14993.
- F. Wan, X.-L. Wu, J.-Z. Guo, J.-Y. Li, J.-P. Zhang, L. Niu and R.-S. Wang, *Nano Energy*, 2015, 13, 450-457.